Impact of a Focused Transthoracic Echocardiography Training Course for Rescue Applications Among Anesthesiology and Critical Care Medicine Practitioners: A Prospective Study

José L. Díaz-Gómez, MD,* Silvia Perez-Protto, MD,† Jennifer Hargrave, DO,‡ Angela Builes, MD,§ Michelle Capdeville, MD,‡ Emir Festic, MD,¶ and Sajid Shahul, MD‖

Objective: To investigate the impact of a sequence of educational interventions in a one-day course on focused transthoracic echocardiography (FOTE) by anesthesia and critical care practitioners.

Design: A prospective analysis of the educational data.

Setting: Educational setting in two academic medical centers and a medical meeting workshop organized by one of these institutions.

Participants: Fifty-six anesthesia and critical care providers, divided into three groups, participated separately in a FOTE training course.

Interventions: All participants received a sequence of educational intervention as follows: A standardized, multiple-choice pretest; a lecture on cardiac and lung ultrasound; and a FOTE “hands-on” training session. The same standardized test was administered and graded as a posttest.

Measurements and Main Results: Fifty-six professionals attended the course in three separate groups: The first were cardiothoracic anesthesia fellows (n = 16) (group 1), the second included critical care practitioners (n = 21) (group 2), and the third were general anesthesiologists (n = 19) (group 3). Parasternal views were most difficult to obtain for all groups (58.1, 63.8, and 58%, respectively). The mean written test scores increased from 14.9 ± 2 to 21.0 ± 2.3 in group 1; from 12.3 ± 3.8 to 19.2 ± 3.7 in group 2; 12 ± 3.5 to 21 ± 2.4 in group 3, (p = 0.0003, 0.0005, 0.0001, respectively).

Conclusions: A FOTE training course improves image acquisition skills and knowledge to the same level independently of professional background and level of experience in critical care ultrasound.

© 2015 Elsevier Inc. All rights reserved.

KEY WORDS: transthoracic echocardiography, critical care, perioperative care, cardiac arrest, circulatory collapse, medical education, focused ultrasound, lung ultrasound

FOCUSED TRANSTHORACIC ECHOCARDIOGRAPHY (FOTE) is an increasingly common diagnostic examination for the management of patients with shock and/or acute respiratory insufficiency in perioperative and critical care settings.1–7 Recently published guidelines have documented the need and utility of FOTE in the management of critically ill patients.8 However, the use of FOTE is limited between the need and utility of FOTE in the management of critically ill patients. Alternatively, there is a recent interest in the implementation of a FOTE curriculum for critical care fellows.11–14

The authors investigated whether a sequence of educational interventions in a 1-day course in FOTE improved the image acquisition skills and knowledge of its application by anesthesia and critical care medicine practitioners. In addition, the authors aimed to explore the long-term effect of this course in the cardiothoracic anesthesia fellows group after completion of their fellowship training.

METHODS

A prospective multicenter study was conducted with participants who were enrolled in 1 of 3 FOTE training courses from July 2012 to November 2012. The study was approved by the Institutional Review Board.

Study Participants

In this investigation, 3 separate groups of professionals who separately attended an FOTE training course in a year period were included. The first group was formed by cardiothoracic anesthesia fellows. The second included critical care fellows, nurse practitioners, and attending intensivists. The third group was represented by anesthesiologists who practiced general anesthesia on a regular basis.

FOTE Training

The training course was designed with theoretic fundamentals on FOTE and practice applications (hands-on training) using human models for skills acquisition. The methodology of the course was an adapted version of previous 1-day echocardiography training courses in 2 previous clinical investigations, and the authors taught the focused assessed transthoracic echocardiography protocol described by Jensen et al.11,17,18 All attendees received a pretest followed by an intensive didactic curriculum, which included image interpretation followed by a hands-on session to demonstrate image acquisition and reinforce basic concepts in the FOTE exam. Questions were designed to assess: a) the identification and b) procurement of FOTE views, c) the recognition of cardiac structures, and d) the interpretation of echocardiography clips after the presentation of clinical cases. The test was administered as a pretest before a hands-on training session. The questions were
displayed on a large monitor screen or overhead projector. A 10-second period was allowed for answering each question. An answer sheet was provided for each participant. The pretest included questions on 4 aforementioned categories. Next, a 45-minute formal lecture on ultrasound-guided anatomy of the heart and lungs was given, and interpretations of images in basic clinical cases were discussed, including the 4 treatable causes of cardiovascular collapse or cardiac arrest (right and left ventricular dysfunction, severe hypovolemia, and cardiac tamponade). In addition, common causes of acute respiratory insufficiency (pleural effusion, pneumothorax, pulmonary edema, and atelectasis) were presented.

The third intervention was a 2-hour hands-on FOTE training session. The hands-on training session included 3 echocardiography skill stations (subcostal, apical, and parasternal views) with participation of healthy volunteers. The course instructors who moderated each session were cardiac anesthesiologists and/or critical care medicine specialists with previous training and certification in advanced perioperative transesophageal echocardiography/ASCEXAM – testamur (principal investigator) by the National Board of Echocardiography. Their baseline competence performance of the instructors was demonstrated by the cognitive (National Board of Echocardiography examination) and technical skills in perioperative echocardiography in a tertiary academic center. The moderator assessed the baseline and postexplanation of FOTE image acquisition skills of each participant. A 5-minute period was dedicated per participant to the acquisition of each echocardiography view. At the end of the training course, the same standardized test was administered as a post-test. The cardiothoracic anesthesia fellows group (group 1) was examined during the last week of completion of their 1-year fellowship training, so it was easier to obtain their participation. In contrast, the members of the other 2 groups would not be available as they were attending a specific workshop (groups 2 and 3). The moderators were not blinded to the identity of the participants and evaluated the quality of the acquired image and assigned a grade of 0 to 5, where 0 was considered the worst and 5 the best. This scale was adopted from the investigation performed by Neelankavil et al, and the authors’ skill station evaluation sheets are presented in Appendix 2.

Analysis

Descriptive statistics were used to determine the frequencies and percentages for the nominal variables, central and dispersion measures were calculated for quantitative data, and the normal distribution was determined with a Shapiro-Wilk test. Nonparametric tests were performed: The Kruskall-Wallis test was used to assess the difference of image quality for each view among the 3 groups, before and after the training. The Wilcoxon test was used to compare changes in scores on the pre- and post-tests for each student. For group 1, the difference of the scores for the test pre-, post-, and 1-year after training was calculated using the Friedman’s test. Significance was defined as p values of less than 0.05.

RESULTS

During the period from July 2012 to November 2012, 56 participants attended 1 of the 3 FOTE courses and were divided into three groups. The demographic data are shown in Table 1. The first group was represented by cardiothoracic anesthesia fellows (n = 16). At the time of study inclusion, this group was receiving their first educational module on perioperative transesophageal echocardiography. The second group included critical care practitioners (8 critical care nurse practitioners, 5 pulmonary and critical care fellows, and 8 attending intensivists; n = 21) who worked together on a daily basis. In this group, 30%, 100%, and 50% of critical care practitioners, fellows, and attendings previously had attended a critical care ultrasound course, respectively. The third group was represented by anesthesiologists who practiced general anesthesia on a regular basis (n = 19). In this group, 30% of the anesthesiologists reported previous education or training in perioperative echocardiography.

Echocardiography View Acquisition

Figure 1A shows that group 1 had the highest success obtaining all echocardiography views before instruction. Parasternal long-axis views were the most difficult to obtain for all groups (58.1, 63.8, and 58.0%, respectively) in comparison to apical and subcostal views. Group 3 had the lowest percentage of correct images getting the subcostal view (30.9%). After the sequence of instruction and practice, all the groups had a higher success rate obtaining each echocardiographic window (Fig 1B). The apical view was not evaluated for group 3 due to unexpected difficulty to procure the echocardiographic window in the healthy model.

Image Quality of Echocardiography Views

Baseline image quality procuring the subcostal view was higher in group 1 and group 2, with a median score of 4, (interquartile range [IQR]: 4-5) than in group 3, which had a median score of 1 (IQR: 0-3; p < 0.0001), as shown in Figure 2A. Similarly, image quality of parasternal short-axis view differed between groups 1 and 2, with a median score of 2 (IQR: 1-3), 2 (IQR: 1-4), and group 3 with a median of 1 (IQR: 0-1; p = 0.01) (Fig 2B). In contrast, long-axis views had similar scores in all groups, with a median quality score for each group: 2 (IQR: 1-3), 2 (IQR: 1-4), 2 (IQR: 1-2), respectively (p = 0.39, Fig 2C), Independent of the evaluated view, at the end of the practice the quality of the image was similar for the three groups (Fig 2).

Written Pretest and Post-Test on FOTE

The written evaluation had mean scores that improved from baseline (Fig 3). The identification of the echocardiography view was the most consistent knowledge acquisition for all groups in the post-test (96.9%, 95.2%, and 96% for groups 1, 2, and 3, respectively). The theoretic knowledge on procurement of the view and recognition of cardiac structures were lower for group 2 in the post-test (77% and 71%, respectively). The mean score increased from 14.9 to 21.0 (IQR: 2.3; p = 0.00005) in a follow-up written test 1 year later (Fig 3C). This group maintained its performance in recognition of echocardiography views, cardiac structures and procurement of each view. Furthermore, the clinical presentation of videos by the group improved from 58.2% to 77.4% after 1 year of the training course.
The principal finding of this study was that anesthesia and critical care practitioners could achieve similar levels of image acquisition skills and knowledge on FOTE after a short-term training course. This improvement in performance was comparable independently of professional background and pre-test scores. The authors also provided evidence that in a subset of participants (cardiac anesthesia fellows), their curriculum may have been adequate to attain proficiency in the FOTE exam. Thus, the authors present an effective short-term training program to help improve performance and skills to be proficient in the FOTE exam in a mixed population of anesthesiology and critical care professionals.

Although previous investigations have demonstrated the effect of echocardiography training on noncardiology residency training programs or a specific medical specialty, the authors included perioperative resuscitation providers to demonstrate the potential utility of FOTE in the scenario of hemodynamic instability. Indeed, the authors show a statistically significant improvement in post-test scores, compared to the pretest score, after receiving the 3 sequential educational interventions. Group 1 (cardiothoracic anesthesia fellows) demonstrated higher scores for all views), all groups had comparatively superior scores for all views), all groups demonstrated higher scores for all aspects of the echocardiography test. Although this training differed in many aspects from FOTE, the fundamentals in echocardiography, the similarity of some of the views, as well as the visual

DISCUSSION

The subcostal view has been promoted in the peri-resuscitation scenario as the view of choice because it does not interfere with ongoing cardiopulmonary resuscitation maneuvers. In the current investigation, group 3 (general anesthesia practitioners) had a much lower success rate obtaining this view (30.9%) in comparison to group 1 and 2 (98.7% and 72.3%, respectively). However, after the instruction in how to procure the view and the hands-on practice, their performance increased to a similar level. As expected, practicing echocardiography skills increased the success rate in obtaining a good image quality. This may have been the case in the current investigation and may explain the short-term improvement of skills. In comparison, Chisholm et al reported an overall lower success rate obtaining the subcostal view. They explained that this view is more inconsistent due to the limiting factors of the abdominal wall muscles and the varying models of the biotype.

Although the groups started at different skill levels (group 1 had comparatively superior scores for all views), all groups showed a statistically significant improvement in post-test scores, compared to the pretest score, after receiving the 3 sequential educational interventions. Group 1 (cardiothoracic anesthesia fellows) demonstrated higher scores for every aspect that was evaluated. As cardiothoracic anesthesiology fellows, they had participated in 4 weeks of formal education and practice in perioperative transesophageal echocardiography before the FOTE training. Although this training differed in many aspects from FOTE, the fundamentals in echocardiography, the similarity of some of the views, as well as the visual

Table 1. Participants Who Attended the FOTE Training Course

<table>
<thead>
<tr>
<th>Group</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 16)</td>
<td>(n = 21)</td>
<td>(n = 19)</td>
<td></td>
</tr>
<tr>
<td>Fellows (cardiothoracic anesthesiology)</td>
<td>16 (100%)</td>
<td>6 (24%)</td>
<td></td>
</tr>
<tr>
<td>or pulmonary and critical care)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical care physicians</td>
<td>8 (38%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical care nurse practitioners</td>
<td>8 (38%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anesthesiologists</td>
<td>19 (95%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: FOTE, focused transthoracic echocardiography.

Fig 1. Evaluation of skills obtaining the echocardiographic views. Percentage of participants who procured the view and recognized cardiac structures (A) before and (B) after training course.
estimation of right or left ventricular function are valid factors to explain a much higher initial level of theoretical knowledge. The cardiothoracic anesthesiology fellows did not decrease their scores despite the fact that they did not receive any further training in FOTE. Thus, the course can have some value as a complement of the concepts and practice learned during the formal training in perioperative transesophageal echocardiography, although a previous investigation by Shillcutt and Bick showed how several transesophageal and transthoracic echocardiography views might be equivalent. This was an intriguing finding, as both echocardiographic modalities shared basic concepts.

Limitations
This was an observational study. The main limitation of the study was that previous echocardiography experience in each participant may confound the results. However, the current investigation found significant improvement in all groups after the educational intervention, with comparable levels of knowledge and skills at the final evaluation. Second, the authors did not evaluate the long-term impact of the intervention in groups 2 and 3, given the organization of the training courses. In contrast, the cardiothoracic anesthesia fellows group was completing their year of formal training, which may have them more familiar with echocardiography and be better prepared for the unannounced evaluation during the last week of their fellowship. An additional limitation was the mixed population between medical and nursing professionals (critical care nurse practitioners). Considering the increasing implementation of multidisciplinary critical care teams with nurse practitioners as extenders of critical care at the front line, it would be reasonable to consider appropriate training in FOTE for all members of the critical care team.

Furthermore, the American Society of Echocardiography has distinguished focused cardiac ultrasound from limited transthoracic echocardiography. Focused cardiac ultrasound examination is considered an extension of the physical exam that can be performed with the intention of recognizing specific pattern recognition in defined clinical settings. Focused cardiac ultrasound does not exclude a formal echocardiographic evaluation whenever it is indicated. Unfortunately, the authors could not obtain any data from the apical view skill station due to an anatomic limitation in the healthy model. However, this is a relatively common situation in the clinical practice because the apical view is considered the most variable, and often only one or two out of three echocardiography windows can be obtained for the critically ill patient. Another limitation was the fact that the evaluation of the view acquisitions was not blinded with respect to pre- or post-training status, with the purpose of reducing observer bias and standardized evaluation was completed by the monitors; see Appendix A. The standardized evaluation sheet has been added in Appendix A.

The main strength of the current investigation was that the authors applied a standardized instruction and measurement of the FOTE exam to different professionals who might use FOTE to facilitate the recognition of treatable causes of shock and/or acute respiratory failure. Similar training courses can be helpful to anesthesiology and critical care practitioners for specific clinical scenarios such as undetermined state of shock. The scope of practice of anesthesiologists and intensivists utilizing focused cardiac ultrasound must be limited to characterization of the state of shock and acute respiratory failure in their clinical setting. Any transthoracic echocardiography used for diagnosis of specific pathologies must be interpreted by a cardiology-echocardiography specialist. This is a debatable conceptual frame, but it entails a practical evaluation of patients that can...
Echocardiography simulation is an efficient method to train anesthesiologists in basic transthoracic echocardiography skills. Anesth Analg 115:1042-1051, 2012

ACKNOWLEDGMENTS
The authors would like to thank Victoria L. Jackson, MLIS, ELS, (Academic and Research Support, Mayo Clinic, Jacksonville, FL) for language help, proofreading, and editorial assistance in the preparation of this manuscript.

