transcutaneous or end-tidal capnometry is commonly used in the polysomnographic evaluation of children in whom sleep disordered breathing manifests predominantly as obstructive hypoventilation. Alternatively, the role of capnometry in adult polysomnography has been more limited, usually for the quantitative assessment of sleep hypoventilation syndromes, or even less commonly, for the measurement of end-tidal CO₂ (ETCO₂) as an adjunct signal for the detection of airflow obstruction in sleep apnea. Few studies are available to assess the use or accuracy of capnometry for those purposes, and it therefore has not been routinely used in adult sleep laboratories.

However, current ETCO₂ sampling devices are reliable and only slightly underestimate the arterial CO₂, with a gradient of 5 mm Hg in patients with minimal ventilation-perfusion mismatch. In obese postoperative patients with obstructive sleep apnea, the mean arterial to ETCO₂ gradient was 8.3 mm Hg. Even in patients with diverse neuromuscular and pulmonary disorders, the ETCO₂ during sleep was found to underestimate a simultaneous arterial CO₂ by ≥ 10 mm Hg in only 21% of the readings.

In that context, in patients with sleep apnea but without suspected sleep-hypoventilation syndromes, we noted elevation of nocturnal ETCO₂ that were unexpected in relation to the body mass index or the apnea-hypopnea index, indices usually associated with daytime hypercapnia in the obesity hypoventilation syndrome. We therefore sought to determine whether the nocturnal ETCO₂ could reflect physiologic characteristics of obstructive sleep apnea not addressed by the apnea-hypopnea index or body mass index, and therefore expand its indication beyond the hypoventilation syndromes. For instance, contributors to the development of an elevated daytime arterial CO₂
linked to obstructive respiratory events during sleep include post-event (subsuming apneas and hypopneas) ventilation as a function of CO$_2$ load10,11 and apnea duration in relation to post-apnea duration.12

We therefore selected groups of obstructive sleep apnea patients with different severity of nocturnal CO$_2$ elevation and assessed the relative contributions of demographic factors, sleep apnea severity, respiratory event and respiratory inter-event duration, as well as post-event amplitude relative to pre-event amplitude, to an overall measure of nocturnal ETCO$_2$.

METHODS

We reviewed polysomnograms and clinical charts of patients diagnosed with obstructive sleep apnea at our center from 2008 to 2009. Inclusion criteria were age > 18 years, total sleep time ≥ 6 h with a sleep efficiency ≥ 65%,11 and an apnea-hypopnea index ≥ 5. We excluded studies where central apneas represented > 50% of the apnea-hypopnea index, studies requiring oxygen administration, titration studies, and other conditions that could confound the nocturnal CO$_2$ or impair the accuracy of the ETCO$_2$ as a measure of arterial CO$_2$ (i.e., chronic obstructive pulmonary disease, asthma, neuromuscular diseases, use of diuretics, alcohol or narcotics, or > 20 pack-year smoking history). To ensure an adequate representation of various ranges of CO$_2$ values, we aimed for an equal number of patients in each of the following groups: maximal nocturnal ETCO$_2$ < 45 mm Hg, between 45 and 50 mm Hg, and > 50 mm Hg.

All polysomnograms were recorded on Polysmith systems (Nihon Kohden, Foothill Ranch, CA), and scored using American Academy of Sleep Medicine guidelines.2 Capnometry data were obtained from calibrated Nonin RespSense devices (Plymouth, MN) interfaced to the Polysmith system. Those devices use a sidestream technology, with sampling obtained through oral/nasal cannulas (Salter labs, Arvin, CA). The sampling flow into the sample cell was 75 mL/min, the total system response time (including delay and rise times) was 4 sec, and the sampling rate for the capnograph tracing was 4 Hz. Apnea was defined as a drop in the peak thermal sensor excursion by ≥ 90% from baseline lasting ≥ 10 seconds. For the purpose of this study, a hypopnea was scored if the event met either the recommended or alternative definitions of the American Academy of Sleep Medicine (i.e., a drop in the nasal pressure signal excursion ≥ 30% from baseline for ≥ 10 sec in association with ≥ 4% oxygen desaturation, or ≥ 50% drop with ≥ 3% desaturation or an arousal).2

The quality of the oximetry and capnographic data was assessed by review of the pulse plethysmographic signal and capnographic waveforms, with exclusion of artifacts of oximetry due to loss of the pulse signal, and exclusion of CO$_2$ waveforms without a clearly identified plateau, including those associated with deterioration of the signal due to obstructive events.

We collected demographic and polysomnographic variables at the time of the PSG: age, sex, body mass index, Epworth Sleepiness Scale score, sleep efficiency, sleep and REM latencies, sleep stage distribution, arousal index, apnea-hypopnea index, nadir oxygen saturation, and time spent below 90% oxygen saturation (as percent of total sleep time). Capnometric data were obtained from the trend report of the Polysmith system, and included stable awake end-tidal CO$_2$ at the beginning of the study before the onset of slow-rolling eye movements (evening awake ETCO$_2$), after completion of the sleep study just before the final calibrations (morning awake ETCO$_2$), and sleep ETCO$_2$. The latter included minimum and maximum sleep ETCO$_2$ and the following 3 time intervals: percents of total sleep time spent with ETCO$_2$ < 45 mm Hg (T45), between 45-50 mm Hg (T45_50), and > 50 mm Hg (T50). An integrated overnight CO$_2$ was calculated as the sum of the products of the estimated average ETCO$_2$ at each of those 3 time intervals by the percent of total sleep time spent at each corresponding time interval: [T45*(45 + minimum ETCO$_2$)] / 2 + [T45_50*(47.5 + maximum ETCO$_2$)] / 2 + [T50*(50 + maximum ETCO$_2$)] / 2. The result was divided by 100 to provide an estimate of nocturnal ETCO$_2$ had it remained constant through the night.

Respiratory event (subsuming apneas and hypopneas) and inter-event durations were measured in seconds. Inter-event durations were measured only if the subsequent respiratory event was within 30 sec from the termination of the preceding event. Pre-event and post-event breathing amplitudes were semi-quantitatively measured on the nasal pressure transducer signal on 60-sec epochs, as the amplitude of the last breath before the corresponding respiratory event and of the first breath after that event respectively (Figure 1). To compensate for expected variation in amplitudes as may occur with positional changes or migration of the oral/nasal cannula, the mean post-event amplitude was referenced to the mean pre-event amplitude.

The onset and offset of apneas and hypopneas were respectively placed at the nadir of the last normal breath and at the start of the first subsequent normal breath approximating the baseline (Figure 1).2 If the baseline amplitude could not be easily determined, the respiratory events were also terminated as per the American Academy of Sleep Medicine guidelines when...
there was a clear and sustained increase in post-event breathing amplitude, or re-saturation of \(\geq 2\% \).²

For each patient we derived: mean apnea and mean hypopnea duration (AD and HD respectively), mean post-apnea and mean post-hypopnea duration (PAD and PHD), mean post-apnea and mean post-hypopnea amplitude (Apo and Hpo) expressed relative to the mean pre-apnea and mean pre-hypopnea amplitude (Apre and Hpre).

Sample size was estimated at 30 subjects based on a minimum meaningful correlation coefficient of 0.50, a power of 0.9, and \(\alpha \) of 0.05.¹⁴ Groups were compared using a \(\chi^2 \) for categorical variables, and analysis of variance for continuous variables. The correlation between integrated overnight CO₂ and demographic and polysomnographic variables was determined by the Pearson correlation coefficient. Comparison of correlations within a single sample was done using the Williams \(T_2 \) statistic.¹⁵ Multiple linear regression analysis was performed to estimate the influence of covariates on the overnight CO₂. Collinearity was measured by means of tolerance and the Variance Inflation Factor. Statistical significance was set at \(p < 0.05 \). Analyses were performed using SPSS, version 11.5. The study was approved by our institutional review board.

RESULTS

Forty-four consecutive studies meeting the inclusion criteria were selected such that maximal ETCO₂ during sleep was \(< 45 \) mm Hg in 15 studies, between 45 and 50 mm Hg in 14 studies, and \(> 50 \) mm Hg in 15 studies. The mean age of the patients was 51 years (standard deviation 14, range 18-92), mean apnea-hypopnea index was 28 events/h (standard deviation 21, range 5.1-105), and the mean body mass index was 34 kg/m² (standard deviation 9, range 20-57). There were 24 females and 19 males. None had a diagnosis of obesity-hypventilation. There were no significant differences between genders in the body mass index, apnea-hypopnea index, mean apnea duration, mean post-apnea duration, and mean post-event to mean pre-event ventilation, though women tended to be older than men (54 vs. 47 years, respectively, \(p = 0.06 \), and to have a smaller neck circumference (38.7 vs. 41.4 cm, respectively, \(p = 0.07 \)).

Demographic, polysomnographic, and laboratory data categorized by level of maximal ETCO₂ reached during the sleep study are shown in Table 1. Neck circumference was higher in the combined groups with maximal ETCO₂ \(\geq 45 \) mm Hg compared to the group with maximal ETCO₂ \(< 45 \) mm Hg (Table 1). Sleep efficiency, percentages of time spent at different sleep stages, percent of time in the supine position, arousal indices, and sleep and REM latency were not significantly different between the 3 groups.

Groups with progressively higher maximal ETCO₂ had progressively shorter mean post-apnea duration, increased AD/PHD, and a smaller mean post-event to mean pre-event amplitude ratio (Table 2).

There was a trend towards a positive correlation between the integrated overnight CO₂ and age (\(r = 0.29, p = 0.06 \)), as well as body mass index (\(r = 0.29, p = 0.06 \)), and no significant correlation with apnea-hypopnea index, neck circumference, Epworth Sleepiness Scale score, sleep efficiency, sleep stages, percent time in the supine position, and percent time with oxygen saturation \(< 90\% \).

The REM latency correlated negatively with mean post-apnea duration (\(r = -0.41, p = 0.006 \)), whereas REM time as percent of total sleep time correlated positively with the mean post-apnea duration (\(r = 0.34, p = 0.03 \)).

The integrated overnight CO₂ correlated with mean apnea duration (\(r = 0.41, p = 0.005 \)) (Figure 2A), and mean-post apnea duration (\(r = -0.67, p < 0.001 \)) (Figure 2B). The correlation of the integrated overnight CO₂ with mean hypopnea duration or mean post-hypopnea duration was very poor and nonsignificant (\(r = -0.10, p = 0.53 \) and \(r = 0.11, p = 0.50 \), respectively). There was no difference between apnea and hypopneas as far as the correlation between the integrated overnight CO₂ and the post-

Table 1—Demographic, laboratory, and polysomnographic variables at baseline

<table>
<thead>
<tr>
<th>Variable</th>
<th>< 45</th>
<th>45-50</th>
<th>> 50</th>
<th>Mean</th>
<th>p-value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>49 (14)</td>
<td>53 (16)</td>
<td>51 (12)</td>
<td>51 (14)</td>
<td>0.74</td>
</tr>
<tr>
<td>Gender (F/M)</td>
<td>8/7</td>
<td>9/5</td>
<td>7/8</td>
<td>24/20</td>
<td>0.63†</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>30 (7)</td>
<td>36 (7)</td>
<td>36 (10)</td>
<td>34 (9)</td>
<td>0.12</td>
</tr>
<tr>
<td>Neck circumference (cm)</td>
<td>37 (5)</td>
<td>41 (5)</td>
<td>42 (5)</td>
<td>40 (5)</td>
<td>< 0.05²</td>
</tr>
<tr>
<td>Epworth</td>
<td>12 (6)</td>
<td>10 (4)</td>
<td>11 (4)</td>
<td>11 (5)</td>
<td>0.53</td>
</tr>
<tr>
<td>Apnea-hypopnea index (events/h)</td>
<td>22 (13)</td>
<td>30 (22)</td>
<td>34 (27)</td>
<td>28 (21)</td>
<td>0.36</td>
</tr>
<tr>
<td>Nadir O₂ sat (%)</td>
<td>83 (8)</td>
<td>82 (6)</td>
<td>80 (9)</td>
<td>82 (8)</td>
<td>0.55</td>
</tr>
<tr>
<td>% time with O₂ < 90%</td>
<td>3 (4)</td>
<td>15 (23)</td>
<td>10 (16)</td>
<td>9 (17)</td>
<td>0.12</td>
</tr>
<tr>
<td>Maximal end-tidal CO₂ (mm Hg)</td>
<td>40.1 (9.2)</td>
<td>48.1 (1.6)</td>
<td>57.0 (7.2)</td>
<td>48.4 (8.8)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Awake evening end-tidal CO₂ (mm Hg)</td>
<td>34.5 (3.8)</td>
<td>40.5 (2.9)</td>
<td>46.6 (3.7)</td>
<td>40.6 (6.1)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Arousal index (events/h)</td>
<td>26.6 (9.8)</td>
<td>31.5 (16.9)</td>
<td>33.2 (25.6)</td>
<td>30.5 (18.4)</td>
<td>0.61</td>
</tr>
<tr>
<td>Percent supine (%)</td>
<td>42.1 (23.0)</td>
<td>35.1 (26.5)</td>
<td>53.5 (36.4)</td>
<td>43.8 (29.7)</td>
<td>0.24</td>
</tr>
<tr>
<td>Stage N3 sleep (%)</td>
<td>9 (9)</td>
<td>13 (12)</td>
<td>10 (12)</td>
<td>11 (11)</td>
<td>0.62</td>
</tr>
<tr>
<td>Stage REM sleep (%)</td>
<td>17 (7)</td>
<td>17 (8)</td>
<td>12 (7)</td>
<td>15 (7)</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Values expressed as mean (standard deviation) except for gender row. *One way analysis of variance unless otherwise indicated; \(\chi^2 \) test; †By contrast analysis, neck circumference in the combined groups with Max ETCO₂ \(\geq 45 \) mm Hg was higher vs. the group with Max ETCO₂ \(< 45 \) mm Hg (\(p < 0.02 \)).
Table 2—Comparison of possible variables predictive of end-tidal CO$_2$ during sleep

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient</th>
<th>p-value</th>
<th>R2</th>
<th>Maximal Sleep end-tidal CO$_2$ (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Apnea Duration: AD (s)</td>
<td>10.70 (0.82)</td>
<td>< 0.001</td>
<td>0.45</td>
<td>< 45 12.64 (1.39)† 12.04 (1.35)† 11.79 (1.45) < 0.001</td>
</tr>
<tr>
<td>Mean Post-Apnea Duration: PAD (s)</td>
<td>19.82 (1.61)</td>
<td>< 0.001</td>
<td>0.06</td>
<td>45-50 17.89 (1.60)† 11.07 (2.10)‡ 16.44 (3.99) < 0.001</td>
</tr>
<tr>
<td>AD/PAD</td>
<td>0.54 (0.05)</td>
<td>0.04</td>
<td>0.05</td>
<td>> 50 0.71 (0.10)† 1.13 (0.28)‡ 0.78 (0.28) < 0.001</td>
</tr>
<tr>
<td>Mean Hypopnea Duration: HD (s)</td>
<td>12.00 (1.43)</td>
<td>0.28</td>
<td></td>
<td>< 45 11.38 (1.42) 12.23 (1.49) 11.87 (1.46)</td>
</tr>
<tr>
<td>Mean Post-Hypopnea Duration: PHD (s)</td>
<td>10.42 (2.92)</td>
<td>0.35</td>
<td></td>
<td>45-50 18.62 (26.91) 12.60 (1.43) 13.80 (15.49)</td>
</tr>
<tr>
<td>HD/PHD</td>
<td>1.26 (0.45)</td>
<td>0.12</td>
<td></td>
<td>> 50 1.02 (0.48) 0.98 (0.15) 1.09 (0.40)</td>
</tr>
<tr>
<td>Mean Post- to Mean Pre-Apnea Amplitude: Apo / Apre</td>
<td>1.65 (0.29)</td>
<td>< 0.001</td>
<td>0.12</td>
<td>< 45 1.13 (0.13)† 0.67 (0.16)‡ 1.41 (0.42) < 0.001</td>
</tr>
<tr>
<td>Mean Post- to Mean Pre-Hypopnea Amplitude: Hpo / Hpre</td>
<td>1.52 (0.25)</td>
<td>< 0.001</td>
<td>0.05</td>
<td>45-50 1.03 (0.13)† 0.57 (0.13)† 1.28 (0.32) < 0.001</td>
</tr>
<tr>
<td>Event amplitude ratio: (Apo + Hpo) / (Apre + Hpre)</td>
<td>1.57 (0.15)</td>
<td>0.004</td>
<td>0.05</td>
<td>> 50 1.08 (0.12)‡ 0.62 (0.13)‡ 1.09 (0.42) < 0.001</td>
</tr>
</tbody>
</table>

Values expressed as mean (standard deviation). *By multivariate analysis of variance. †Represents significant difference compared to Max ETCO$_2$ < 45 mm Hg group by contrast analysis. ‡Represents significant difference compared to Max ETCO$_2$ 45-50 mm Hg group by post hoc analysis.

Table 3—Multiple regression of post-apnea duration, apnea duration, and age as predictors of the integrated overnight CO$_2$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient</th>
<th>p-value</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-Apnea Duration: PAD (s)</td>
<td>-0.65</td>
<td>< 0.001</td>
<td>0.45</td>
</tr>
<tr>
<td>Apnea Duration: AD (s)</td>
<td>0.87</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.08</td>
<td>0.04</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Integrated overnight CO$_2$ = 36.2 – (0.65*PAD) + (0.87*AD) + (0.08*Age). (Model R2 = 0.56).

event relative to pre-event amplitude, with comparable correlation coefficients (p = 0.30), slopes, and intercepts. Therefore a mean post-event to mean pre-event (combining apneas and hypopneas) amplitude ratio was calculated, with which the integrated overnight CO$_2$ was also correlated (r = -0.71, p < 0.001) (Figure 2C).

The evening and morning awake ETCO$_2$ were nearly identical and closely correlated (40.7 ± 6.2 vs. 40.5 ± 5.8 mm Hg, respectively; r = 0.81, p < 0.001). The evening awake ETCO$_2$ correlated positively with mean apnea duration (r = 0.42, p = 0.004), inversely with mean post-apnea duration (r = -0.81, p < 0.001), and inversely with mean post- to mean pre-event amplitude ratio (r = -0.80, p < 0.001).

Cross-correlation analysis indicated that collinearity was a concern, as the mean post-event to mean pre-event amplitude ratio was correlated with mean apnea duration (r = -0.43, p = 0.005), and particularly with mean post-apnea duration (r = -0.88, p < 0.001) (Figure 3). However, mean post-apnea duration was not correlated with mean apnea duration (r = -0.25, p = 0.10).

In a multivariable regression model, mean post-apnea duration, mean apnea duration, and age were each independently correlated with the integrated overnight CO$_2$; mean post-apnea duration contributing the most to the variance in integrated overnight CO$_2$ (45%), with mean apnea duration and age contributing an additional 6% and 5%, respectively, such that the total model explained 56% of the variance in integrated overnight CO$_2$ (Table 3). The body mass index and apnea-hypopnea index were not significantly correlated with the integrated overnight CO$_2$ in the multivariable model (p = 0.17 and 0.47, respectively).

DISCUSSION

Our study shows that, in patients with obstructive apnea: (1) A shorter post-apnea duration is a greater contributor to an elevated integrated overnight CO$_2$ than apnea duration, with older age as an additional lesser contributor; (2) Post-hypopnea amplitude is equally as important as the post-apnea amplitude with post-event relative to pre-event (combining apneas and hypopneas) amplitude contributing to the integrated overnight CO$_2$, but also correlating strongly with apnea duration and post-apnea duration; (3) Post-apnea duration is not correlated with apnea duration; (4) The apnea-hypopnea index, body mass index, hypopnea duration, and post-hypopnea duration are not important contributors to the overnight CO$_2$; and (5) The baseline awake end-tidal CO$_2$ also correlated positively with mean apnea duration, and inversely with mean post-apnea duration and post-event amplitude relative to pre-event amplitude.

In our study, the post-event to pre-event amplitude ratio was tightly correlated with post-apnea duration (Figure 3B), suggesting that a common pathophysiologic mechanism, possibly airway collapsibility, underlies those two measures, and may explain our finding of an association between longer post-apnea duration and a more favorable REM architecture (with both a shorter REM latency and increased REM sleep). For instance, stable breathing correlated with passive collapsibility of the airway in patients with suspected obstructive sleep apnea. Consequently, multi-collinearity was seen between post-apnea duration and post-event to pre-event amplitude. Although ventilatory measures such as breath amplitude may be as important as post-apnea duration, the individual contribution of each of those two variables to the overnight integrated CO$_2$ is difficult to discern in the context of collinearity. We therefore included only the apnea and post-apnea durations in the final model shown in Table 3, because durations were more sharply defined, less subject to variability in measurements (compared to amplitudes), limited to apneas (and therefore independent of the various hypopnea definitions), and independent of correc-
tion measures (such as square root modification of the nasal pressure amplitude signal17,18) to compensate for the nonlinear nasal pressure to flow relationship.

However, once the airway has collapsed and an apnea or hypopnea begun, the duration of the obstructive events may depend on factors other than collapsibility such as the arousal threshold. For instance, since arousals terminate an obstructive event, apnea duration has been considered a surrogate of the arousal threshold.19 These proposals, with separate determinants of apnea duration and post-apnea duration, are consistent with the absence of an inverse correlation between those two variables in our study as well as other studies.12

The integrated overnight CO\textsubscript{2}, did not correlate with hypopnea and post-hypopnea durations, perhaps reflecting the shape of the relationship between CO\textsubscript{2} and ventilation (the metabolic hyperbola), such that the reduced ventilation during hypopneas, was either sufficient to prevent an increase in arterial CO\textsubscript{2}, or decreased our ability to detect such an effect within the technical constraints of our study. In that regard, the most important constraint is our removal of data associated with deterioration of the capnographic waveforms during obstructive events. This may have resulted in an underestimation of the true overall nocturnal CO\textsubscript{2}, and perhaps explain why apnea duration was not as strong a predictor of nocturnal CO\textsubscript{2} as post-apnea duration in our study (an alternative explanation may be the constraint of the conventional 10-second threshold to the apnea definition). Note that loss of the capnographic signal during obstruction, which is considered an artifact in our study, has been used diagnostically to detect apneas,3 such that the lowered overnight end-tidal CO\textsubscript{2}, was shown to be associated with the apnea-hypopnea index severity.4 We confirm the results of other studies showing a relationship between a longer apneas or shorter post-apnea duration with a higher awake arterial CO\textsubscript{2}, and between an impaired post-event ventilatory response and a higher awake arterial CO\textsubscript{2}.10,11 Our study extends those results and demonstrates that, in individuals with obstructive sleep apnea, gradations of the awake CO\textsubscript{2} even within the normal range, reflect events occurring during sleep, with elevation of nocturnal carbon dioxide as a possible intermediary step associated with shorter post-apnea duration, with lesser contributions from longer apnea duration, and increased age.

In contrast, we found that the apnea-hypopnea index was not a significant predictor of the integrated overnight CO\textsubscript{2}, and that the body mass index trended towards a poor correlation with the integrated overnight CO\textsubscript{2}, though both are important determinants of daytime hypercapnia in obese patients with obstructive sleep apnea.9 A potential explanation for those findings is that, beyond causing variations of awake CO\textsubscript{2} within the normal range, inciting events to nocturnal hypercapnia (such as lower post-event ventilation, longer apnea duration, shorter post-apnea duration) require other factors (such as the apnea-hypopnea index or body mass index) for the transition to daytime hypercapnia. For instance, obese patients, and especially those with the metabolic syndrome, have a higher resting metabolic rate compared to non-obese patients21,22 but also have a decrease in metabolic rate during sleep in direct proportion to the body mass index.21 The resting to sleep differential in the metabolic rate based on body mass index, may explain the stronger contribution of
the body mass index to the development of daytime as opposed to nocturnal hypercapnia.

Our findings do not establish whether an impairment of ventilation (as determined by apnea and post-apnea duration, or post-ventilation relative to pre-ventilation) determines ETCO₂, or whether elevation in the ETCO₂ impairs ventilation. However, progressive hypercapnia above a certain threshold improves upper airway stability in a linear fashion. This pharyngeal chemosensitivity parallels the control gain of central and peripheral chemoreceptors, with the net effect that increased CO₂ protects and increases ventilation. Our findings are therefore more consistent with a ventilatory impairment in the balance between the accumulation of CO₂ (longer apnea duration) and perhaps more importantly the unloading of CO₂ (longer post-apnea duration) leading to nocturnal then daytime elevation of CO₂.

Our study expands the indications of capnometry during polysomnography beyond its current contexts of apnea detection and quantification of the hypoventilation syndromes² to its use as a reflection of the pathophysiology, severity, or ventilatory burden of sleep apnea, which may not be fully captured by the apnea-hypopnea index. These findings may have both diagnostic and prognostic clinical implications, as exhaled CO₂ may be a physiologic marker of disease severity that is independent of the apnea-hypopnea index, reflects the balance between event and inter-event duration, and may be an intermediary stage towards the development of daytime hypercapnia in some individuals. Advances in methods of exhaled breath analysis may broaden the role of exhaled CO₂ as a diagnostic tool and therapeutic target in patients with sleep apnea.²⁶

Abbreviations

AD, mean apnea duration
Apo, mean post-apnea amplitude
ETCO₂, end-tidal CO₂
HD, mean hypopnea duration
Hpo, mean post-hypopnea amplitude
Hpre, mean pre-hypopnea amplitude
PAD, mean post-apnea duration
PHD, mean post-hypopnea duration

References

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contribution of Dr. Nancy Foldvary-Schaefer for her thoughtful review of the manuscript, and Nengah Hariadi and Jie Zeng for technical support. Work for this study was performed at the Cleveland Clinic, Cleveland, OH. Raed A. Dweik is supported by the following grants: HL081064, HL107147, HL095181, and RR026231 from the National Institutes of Health (NIH), and BRCP 08-049 Third Frontier Program grant from the Ohio Department of Development (ODOD).

SUBMISSION & CORRESPONDENCE INFORMATION

Submitted for publication March, 2012
Submitted in final revised form August, 2012
Accepted for publication August, 2012
Address correspondence to: Loutfi S. Aboussouan, M.D., Sleep Disorders Center/Neurological Institute and Respiratory Institute, Cleveland Clinic, A-90, 9500 Euclid Avenue, Cleveland, OH 44195; Tel: (216) 444-0420; Fax: (216) 445-8160; E-mail: aboussl@ccf.org

DISCLOSURE STATEMENT

This was not an industry supported study. The authors have indicated no financial conflicts of interest.