Cardiac Arrest in the Operating Room: Part 2—Special Situations in the Perioperative Period

Matthew D. McEvoy, MD,* Karl-Christian Thies, MD, FRCA, FERC, DEAA,† Sharon Einav, MD,‡ Kurt Ruetzler, MD,§ Vivek K. Moitra, MD, FCCM,¶ Mark E. Nunnally, MD, FCCM,# Arna Banerjee, MD, Guy Weinberg, MD,** Andrea Gabrielli, MD, FCCM,†† Gerald A. Maccioli, MD, FCCM,‡‡ Gregory Dobson, MD,§§ and Michael F. O’Connor, MD, FCCM¶¶

As noted in part 1 of this series, periprocedural cardiac arrest (PPCA) can differ greatly in etiology and treatment from what is described by the American Heart Association advanced cardiac life support algorithms, which were largely developed for use in out-of-hospital cardiac arrest and in-hospital cardiac arrest outside of the perioperative space. Specifically, there are several life-threatening causes of PPCA of which the management should be within the skill set of all anesthesiologists. However, previous research has demonstrated that continued review and training in the management of these scenarios is greatly needed and is also associated with improved delivery of care and outcomes during PPCA. There is a growing body of literature describing the incidence, causes, treatment, and outcomes of common causes of PPCA (eg, malignant hyperthermia, massive trauma, and local anesthetic systemic toxicity) and the need for a better awareness of these topics within the anesthesiology community at large. As noted in part 1 of this series, these events are always witnessed by a member of the perioperative team, frequently anticipated, and involve rescuer–providers with knowledge of the patient and the procedure they are undergoing or have had. Formulation of an appropriate differential diagnosis and rapid application of targeted interventions are critical for good patient outcome. Resuscitation algorithms that include the evaluation and management of common causes leading to cardiac arrest in the perioperative setting are presented. Practicing anesthesiologists need a working knowledge of these algorithms to maximize good outcomes. (Anesth Analg 2018;126:889–903)

Advanced cardiac life support (ACLS) was originally developed as an extension of basic life support with a focus on out-of-hospital cardiac arrest (OHCA).1 OHCA is now recognized as a distinct entity from in-hospital cardiac arrest (IHCA), particularly in relation to more common etiologies of arrest, average response time, and survival.2 As noted previously,1 periprocedural cardiac arrest (PPCA) is different from both OHCA and medically related IHCA. The etiologies of the crisis, the perioperative team knowledge of the patient’s comorbidities, the awareness of current physiological state, and the immediate arrest response time significantly improve restoration of spontaneous circulation and survival to discharge when compared to other forms of IHCA.3–6

In addition to these differences in clinical presentation and management, numerous studies have also demonstrated knowledge and skill deficiencies in the proper assessment and management of perioperative crises within the anesthesiology community.7–12 Frequent and concise updates of the knowledge content necessary for managing high-stakes perioperative events is necessary for preparing anesthesiologists and perioperative teams to provide appropriate and timely care.13,14 As noted in part 1, while previous publications have described cardiac arrest and crisis management in the operating room, the most recent update in ACLS prompted a part 1 review of the current literature concerning perioperative life-threatening crisis and cardiac arrest. Accordingly, the goal of this part 2 review is to offer an updated clinical perspective of cardiac arrest during the perioperative period. In part 1, we summarize the causes and outcomes of perioperative cardiac arrest, review concepts in resuscitation of the perioperative patient, and propose a set of algorithms to aid in the prevention and management of cardiac arrest during...
the perioperative period. In this article, we discuss special anesthesia-related crises and the management thereof.

This review is focused on 8 special circumstances in the perioperative period that, while uncommon, are essential for all practicing anesthesiologists to know. The clinical scenarios presented are severe anaphylaxis, tension pneumothorax, local anesthetic systemic toxicity (LAST), malignant hyperthermia (MH), severe hyperkalemia, hypertensive crisis, trauma-related cardiac arrest, and pulmonary embolism (PE; thrombus or gas). Each scenario will be presented with a brief review of pathophysiology and epidemiology followed by recommendations on proper assessment, initial management, and subsequent management of each perioperative crisis based on a comprehensive review of the literature. The information presented in this article represents the background behind the management recommendations proposed in widely available crisis management checklists such as the Stanford and Harvard crisis checklists that are familiar to many practicing anesthesiologists.15,16 It should be noted that these well-recognized clinical entities are presented as single cause of a life-threatening crisis and out of the clinical contest of more complex conditions like septic shock or multiorgan system failure.

METHODS
An international group of 12 experts in the field of perioperative resuscitation has reviewed best available evidence on management of cardiac arrest and periprocedural crises. These experts were selected on the basis of several criteria: (1) clinical experience in anesthesiology and perioperative patient management; (2) expertise in simulation training in perioperative crises; (3) familiarity with the evidence behind current resuscitation guidelines; and (4) international representation (ensure that the recommendations are easily translatable to bedside practice in multiple clinical platforms). The group communicated via email, face-to-face meetings, and telephone. The papers selected for review were those included in the previous iteration of these guidelines1 (which underwent repeat scrutiny) and relevant papers that had been published since 2012 and available in PubMed on the specific topics to be discussed. For part 2, disagreements among committee member were discussed as a group in an attempt to reach consensus, and in case of ongoing dissent, adjudicated by 3 of the authors (M.D.M., V.K.M., and M.F.O.).

The scenarios were chosen through a modified Delphi technique involving several rounds of input from the group. These scenarios were chosen because they represent perioperative emergencies that are likely to be immediately life threatening. Four of the topics briefly covered in a previous publication2 were reanalyzed for a more in-depth discussion and updated knowledge (eg, severe anaphylaxis and hyperkalemia) or landmark publications (eg, trauma-related cardiac arrest). Due to constraints on length for the review article, the number of included scenarios was limited to 7. As such, the scenarios presented are not intended to be an exhaustive list.

Anaphylaxis
Pathophysiology and Epidemiology. Anaphylaxis is a severe, life-threatening systemic hypersensitivity reaction mediated by immunoglobulins IgE and IgG and accounts for about 500–1000 deaths per year in the United States.17,18 The causative agent is usually not obvious, and assigning causality is typically complicated in the periprocedural and hospital setting, where patients are commonly exposed to multiple agents. Furthermore, anaphylactic reactions may occur with no documented prior exposure.19 Hypersensitivity reactions are graded 1–5 corresponding to minor, low severity, life-threatening symptoms, cardiac or respiratory arrest, and death.20,21 The overall incidence of hypersensitivity reactions is about 15 cases per 10,000 operations (95% confidence interval, 13–17 per 10,000).22 The incidence of severe hypersensitivity reactions (grade 3–5) with life-threatening symptoms is about 2 cases per 10,000 operations.22

Presentation and Initial Assessment. Anaphylaxis is characterized by the rapid onset of potentially life-threatening airway, breathing, or circulatory problems. The initial symptoms are nonspecific. Rhinitis, tachycardia, confusion, altered mental status/presyncope, and skin and mucosal changes are common in the awake patient, but not always present.21 In addition, bronchospasm is not present in all cases and does not necessarily precede cardiovascular instability. Extensive vasodilatation and increased vascular permeability lead to decreased cardiac preload with relative hypovolemia, which can in turn cause cardiovascular depression, myocardial ischemia, acute myocardial infarction, and malignant arrhythmias (anaphylactic shock).24,25 When hemodynamic deterioration occurs rapidly and untreated, patients can experience cardiac arrest.24,25 Evidence in the treatment of anaphylaxis is generally limited and is mostly based on case reports and extrapolations from animal models, nonfatal cases, interpretation of pathophysiology, and consensus opinion.19

Assessment and Initial Management Steps. When anaphylaxis is within the differential diagnosis, surgery should be interrupted, if possible, and the likely triggers of anaphylaxis should be immediately removed (eg, stopping an injection or infusion of medication or blood products).26 Administration of epinephrine is indicated in patients with clinical features of anaphylaxis.27,28 In the setting of signs and symptoms of severe anaphylaxis, 100–300 µg epinephrine should be given intravenously (IV) immediately with repeated and escalating doses as clinically indicated. We do not recommend to use the same epinephrine doses used in pulseless cardiac arrest (1 mg IV) if the patient maintains a cardiac rhythm with a pulse. Caution is warranted, as fatal dysrhythmias to large doses of epinephrine have been reported.27,29 In patients without an IV line, early intramuscular administration of 300–500 µg epinephrine in the anterolateral aspect of the middle third of the thigh is recommended, with this dose being repeated every 5–15 minutes in the absence of clinical improvement.30,31 Inhaled or subcutaneous administration of epinephrine is ineffective for severe anaphylaxis.28 Close hemodynamic monitoring (eg, arterial blood pressure) with a goal systolic blood pressure (SBP) ≥90 mm Hg is indicated.

Immediate endotracheal intubation is critical and should not be delayed, as oropharyngeal and laryngeal edema are likely to occur rapidly.25 If necessary, a surgical airway should be considered.33 Initial fluid resuscitation using 20 mL/kg crystalloid infusions is indicated to treat the vasodilatory component of anaphylactic shock.34,35
Subsequent Assessment and Treatment Steps. If hemodynamic instability persists after initial epinephrine boluses, this drug should be continued by a carefully titrated continuous IV infusion (0.05–0.3 µg/kg/min) because the plasma half-life of epinephrine is brief (<5 minutes). If epinephrine infusion fails to restore normal hemodynamic variables, continuous infusions of vasopressin, norepinephrine, methoxamine, and metaraminol may be considered. Glucagon should be considered in patients who have taken β-blockers and who are unresponsive to combined inotrope and vasopressors management. Adjuvant use of antihistamines is appropriate, and treatment with inhaled β2-adrenergic agents and IV corticosteroids should be considered in severe anaphylaxis. Extracorporeal life support (venous–arterial extracorporeal membrane oxygenation) has been successful in isolated cases and may be considered if clinical staff and equipment is immediately available. After stabilization, the patient should be monitored in an intensive care unit (ICU) for at least 24 hours due to the bimodal nature of severe anaphylaxis and a high risk of recrudescence. Finally, laboratory testing for histamine, tryptase, or IgE within 24 hours is indicated for diagnostic purposes.

Tension Pneumothorax

Epidemiology and Pathophysiology. A tension pneumothorax occurs when there is a “ball-valve effect” within the lung allowing progressive accumulation of air within the pleural space, which in turn leads to a corresponding increase in intrapleural and intrathoracic pressures. In tension pneumothorax, the intrapleural pressure is positive and exceeds the atmospheric pressure throughout the respiratory cycle. The incidence of tension pneumothorax remains poorly estimated and ranges from 1% to 3% in prehospital, major trauma, and ICU patients.

The pathophysiology of tension pneumothorax differs between patients who are spontaneously breathing versus those on positive-pressure ventilation. In spontaneously breathing patients, several compensatory mechanisms likely prevent initial hemodynamic compromise. These factors include increasing respiratory rate, decreased tidal volume and negative-pressure contralateral chest excursions. These mechanisms may maintain arterial blood pressure by limiting transmitting pleural pressure to the mediastium and contralateral hemithorax. In patients receiving positive-pressure ventilation, increased intrapleural pressure throughout the respiratory cycle produces a marked decrease in cardiac venous return, which leads to hypotension, and, if untreated, may result in cardiac arrest.

Presentation and Initial Assessment. Spontaneously breathing patients with tension pneumothorax present with shortness of breath, dyspnea, tachypnea, respiratory distress, hypoxemia, and ipsilateral decreased air entry and percussion hyperresonance. In a large systematic review, the reported incidence of respiratory arrest (9%), hypotension (16%), and cardiac arrest (2%) were much lower compared to patients on positive-pressure ventilation. Patients on positive-pressure ventilation usually present with

Table 1. Assessment and Management of Severe Anaphylaxis

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Initial management</th>
<th>Subsequent management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confusion, altered mental status/presyncope</td>
<td>Stop or remove the inciting agent or drug (eg, NMBD, antibiotics, blood products, IV contrast, or latex)</td>
<td>Send blood for tryptase level to support the diagnosis</td>
</tr>
<tr>
<td>Rash and/or rhinitis</td>
<td>If feasible, stop surgery or procedure</td>
<td>Monitor in ICU for at least 24 h as there is a risk of recrudescence</td>
</tr>
<tr>
<td>Perioral/periorbital edema, laryngeal edema, stridor</td>
<td>Oxygen at Fio2 of 1.0; intubate immediately for respiratory distress</td>
<td></td>
</tr>
<tr>
<td>Bronchospasm/dyspnea (not always present)</td>
<td>Watch for auto-PEEP if severe bronchospasm</td>
<td></td>
</tr>
<tr>
<td>Tachycardia</td>
<td>100–300 µg epinephrine in repeated/escalating doses (or 300–500 µg IM if no IV access present)</td>
<td></td>
</tr>
<tr>
<td>Acute onset hypotension</td>
<td>±Vasopressin 2 U IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start epinephrine infusion#8232;((0.05–0.3 µg/kg/min IV) for a goal SBP &gt;90 mm Hg; observe for myocardial ischemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vasopressin or norepinephrine infusions may be added in patients who are hypotensive in spite of high doses of epinephrine (eg, &gt;2 mg IV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV fluids/large bore access—initial treatment is bolus of 20 mL/kg IV of LR or PLA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H1 blocker (150 mg diphenhydramine IV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H2 blocker (20 mg famotidine IV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>±Corticosteroid (eg, 50–150 mg hydrocortisone IV or methylprednisolone 1–2 mg/kg IV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continuous arterial blood pressure monitoring as early as possible (systolic blood pressure ≥90 mm Hg)</td>
<td></td>
</tr>
</tbody>
</table>

Subsequent Assessment and Treatment Steps. If hemodynamic instability persists after initial epinephrine

| Continuous arterial blood pressure monitoring as early as possible (systolic blood pressure ≥90 mm Hg) | Send blood for tryptase level to support the diagnosis | Monitor in ICU for at least 24 h as there is a risk of recrudescence |

Subsequent Assessment and Treatment Steps. If hemodynamic instability persists after initial epinephrine boluses, this drug should be continued by a carefully titrated continuous IV infusion (0.05–0.3 µg/kg/min) because the plasma half-life of epinephrine is brief (<5 minutes). If epinephrine infusion fails to restore normal hemodynamic variables, continuous infusions of vasopressin, norepinephrine, methoxamine, and metaraminol may be considered. Glucagon should be considered in patients who have taken β-blockers and who are unresponsive to combined inotrope and vasopressors management. Adjuvant use of antihistamines is appropriate, and treatment with inhaled β2-adrenergic agents and IV corticosteroids should be considered in severe anaphylaxis. Extracorporeal life support (venous–arterial extracorporeal membrane oxygenation) has been successful in isolated cases and may be considered if clinical staff and equipment is immediately available. After stabilization, the patient should be monitored in an intensive care unit (ICU) for at least 24 hours due to the bimodal nature of severe anaphylaxis and a high risk of recrudescence. Finally, laboratory testing for histamine, tryptase, or IgE within 24 hours is indicated for diagnostic purposes.

Tension Pneumothorax

Epidemiology and Pathophysiology. A tension pneumothorax occurs when there is a “ball-valve effect” within the lung allowing progressive accumulation of air within the pleural space, which in turn leads to a corresponding increase in intrapleural and intrathoracic pressures. In tension pneumothorax, the intrapleural pressure is positive and exceeds the atmospheric pressure throughout the respiratory cycle. The incidence of tension pneumothorax remains poorly estimated and ranges from 1% to 3% in prehospital, major trauma, and ICU patients.

The pathophysiology of tension pneumothorax differs between patients who are spontaneously breathing versus those on positive-pressure ventilation. In spontaneously breathing patients, several compensatory mechanisms likely prevent initial hemodynamic compromise. These factors include increasing respiratory rate, decreased tidal volume and negative-pressure contralateral chest excursions. These mechanisms may maintain arterial blood pressure by limiting transmitting pleural pressure to the mediastium and contralateral hemithorax. In patients receiving positive-pressure ventilation, increased intrapleural pressure throughout the respiratory cycle produces a marked decrease in cardiac venous return, which leads to hypotension, and, if untreated, may result in cardiac arrest.

Presentation and Initial Assessment. Spontaneously breathing patients with tension pneumothorax present with shortness of breath, dyspnea, tachypnea, respiratory distress, hypoxemia, and ipsilateral decreased air entry and percussion hyperresonance. In a large systematic review, the reported incidence of respiratory arrest (9%), hypotension (16%), and cardiac arrest (2%) were much lower compared to patients on positive-pressure ventilation. Patients on positive-pressure ventilation usually present with
hypoxemia, tachycardia, sudden onset of hypotension, subcutaneous emphysema, and ipsilateral decreased air entry. These signs are followed by circulatory collapse and subsequent cardiac arrest with pulseless electrical activity (PEA). Tension pneumothorax should always be in the differential diagnosis of a patient with acute decompensation during laparoscopic surgery.50

Traditionally, diagnosis relies on clinical signs and symptoms although these are unreliable (especially contralateral tracheal deviation and jugular venous distension). Thoracic ultrasonography, which is being used with increasing frequency, may be superior to chest radiography for diagnosing pneumothorax (sensitivity of approximately 80%–90% vs 50%) and can also be performed rapidly at the bedside.51,52

**Initial Management Steps.** Initial treatment should focus on maximizing oxygenation. Immediate tube thoracostomy by trained personnel is encouraged as the treatment of choice in both the ventilated and the spontaneously breathing patient.53 However, it should be noted that in situations of high clinical suspicion of tension pneumothorax (eg, high airway pressures, unilateral breath sounds, and circulatory instability in the setting of pneumoperitoneum), immediate needle decompression would be recommended rather than delaying treatment.

**Subsequent Assessment and Treatment Steps.** After initial assessment and treatment, the patient should be stabilized to prevent further respiratory or cardiovascular compromise. The tube thoracostomy is left in place until the parenchymal injury that caused the tension pneumothorax has resolved. The underlying cause for the parenchymal injury needs to be ascertained. Occasionally surgical repair may be indicated. Resolution of the pneumothorax is documented with serial chest radiographs.

**Local Anesthetic Systemic Toxicity**

**Epidemiology and Pathophysiology.** While any use of local anesthetic can potentially lead to LAST, peripheral nerve block carries the highest risk, with published rates typically ranging from 1 to 10 per 10,000 qualifying this iatrogenic complication as a “rare event.”54 Nevertheless, the potential for severe, even fatal physiological sequelae demands that measures be taken to reduce the likelihood of LAST and that education/training include detection and treatment of this condition. In addition to using standard monitors and safety measures (eg, frequent aspiration during needle progression incremental injection), there is evidence that the use of ultrasound guidance can reduce the risk of LAST.55

**Presentation and Initial Assessment.** A wide range of either neurological symptoms (eg, seizure, agitation, or obtundation) or cardiovascular signs (eg, arrhythmia or conduction block, hypertension, tachycardia, or progressive hypotension and bradycardia) occur with LAST. A study of LAST episodes published from 1979 to 2009 showed that >40% of cases departed from the standard text book presentation (eg, rapid-onset seizure potentially leading to cardiac arrest).56 In 35 of 93 patients (38%), symptoms were delayed >5 minutes, and in 10 patients (11%), cardiovascular signs occurred without a neurological prodrome. Another study from the same group indicated that there is a wide variety of clinical presentations in cases of LAST, including an increase in delayed onset (52%; >5 minutes from injection), which is likely a result of ultrasound guidance.57

**Initial Management Steps.** The initial focus in treating LAST includes managing the airway to assure adequate oxygenation and ventilation and using a benzodiazepine to suppress seizures. Early treatment of LAST by infusion of lipid emulsion 20% can prevent progression to cardiovascular compromise58 possibly by reducing peak local anesthetic levels.59 Propofol is cardiodepressant, and its lipid content is inadequate to confer benefit. It is important to continue monitoring even after symptoms resolve because recurrence or delayed progression can occur after an interval of apparent stability.60

**Subsequent Assessment and Treatment Steps.** If LAST progresses to cardiovascular collapse, it is important to administer high-quality cardiovascular support since improving coronary and cerebral blood flow reduces local anesthetic tissue concentrations both directly and by delivering lipid emulsion to affected sites. The main benefit of infusion of lipid emulsion in reversing LAST is accelerating redistribution of local anesthetic, rapidly shuttling drug from sites of toxicity (brain and heart) to unaffected organs (eg, liver and skeletal muscle). This scavenging effect is the result of both partitioning into the lipid phase and the direct inotropic effect of lipid emulsion infusion.61 The direct inotropy is seen in intact rats and isolated heart without a pharmacotoxic challenge; however, during experimental LAST, it only occurs after myocardial bupivacaine content drops below a specific (eg, channel blocking) threshold. Lipid infusion also exerts a postconditioning effect that might contribute to successful resuscitation.62 It is important to consider extracorporeal life support relatively early in those instances in which the patient does not respond to more conservative measures. Postevent monitoring should occur for at least 6 hours because cardiovascular instability can recur after initial recovery. Table 2 provides a full list of management steps.

**Malignant Hyperthermia**

**Epidemiology and Pathophysiology.** MH is an extreme reaction to volatile anesthetics and succinylcholine, which is attributed to abnormalities of skeletal muscle metabolism and calcium disposition. Its occurrence is rare, ranging between 1:62,000 and 1:500,000 anesthetics, more commonly occurring in men and younger patients, but described in a wide variety of patients.63,64 The pathophysiology of this syndrome involves mainly cytoplasmic proteins participating in the movement of calcium within skeletal muscle, most commonly the ryanodine receptor. However, many genetic abnormalities are associated with MH, both inherited or sporadic. The syndrome is marked by extreme muscle hypermetabolism, leading to muscle necrosis, hyperpyrexia, acidosis, and in extreme cases, cardiac arrest.

**Presentation and Initial Assessment.** Because of its rarity, MH can be a once-in-a-career event. Mortality without dantrolene treatment is as high as 80%, but with it, it...
may be as low as 1.4%. Because the time to dantrolene administration correlates with morbidity and mortality, early recognition is crucial to an effective response. The earliest signs of MH are hypercapnia and sinus tachycardia. Masseter muscle spasm, general muscle rigidity, tachypnea, and rising temperature (late) are additional common findings. Blood gas analysis can reveal respiratory and metabolic acidosis, especially when drawn from a vein draining a large muscle bed.

**Initial Management Steps.** When MH is suspected, all triggering agents should be immediately discontinued. Dantrolene 2.5 mg/kg IV is the key therapy for MH. Several formulations exist, and providers should be familiar with preparation and administration of a normal adult dose in anticipation of an MH event. Dantrolene should be available at all places that triggering anesthetic agents are available. Regular monitoring of arterial PaCO₂, temperature, and lactate levels should accompany dantrolene administration, and any abnormalities should be aggressively treated with external and internal cooling, ventilation, and fluid resuscitation.

**Subsequent Assessment and Treatment Steps.** After initial recognition and treatment, the goals of care involve the mitigation of ongoing tissue injury, hyperthermia, and their sequelae. With extremes of temperature (median temperature, 40.3°C), disseminated intravascular coagulation may occur. Other complications can occur at any temperature, but mortality correlates with temperature. Rhabdomyolysis is common; if severe, it can lead to renal failure and hyperkalemia. Cooling and monitoring for these complications should continue for 72 hours after a suspected episode, because of the risk of recrudescence. Because dantrolene interferes with calcium disposition, patients should be monitored for muscle weakness. Importantly, calcium channel blockers are contraindicated in the setting of dysrhythmias. MH resources are available through expert groups in the United States (www.mhaus.org) and in Europe (www.emhg.org). Table 3 provides a full list of management steps.

**Severe Hyperkalemia**

**Epidemiology and Pathophysiology.** The exact cutoff for moderate or severe hyperkalemia is inconsistently described in the literature. However, recent reports note that initiation of emergency therapies are recommended for serum potassium levels >6.0 or 6.5 or electrocardiographic (ECG) manifestations of hyperkalemia, regardless of potassium level. Of note, a potassium level of ≥6.5 mmol/L occurs in only 0.1% of hospitalized patients. Acidosis (primarily metabolic), for example, promotes an extracellular potassium shift; each 0.1 unit decrease in pH is accompanied by an increase of ∼0.6 mmol/L in serum potassium. The most common causes of hyperkalemia are renal pathology and drug therapy. There are limited data on the prevalence of hyperkalemia in adult patients undergoing surgery and anesthesia. However,
hyperkalemia is consistently estimated to be the cause of death in 1%–2% of cases of anesthesia-related cardiac arrests in children.73–75

**Presentation and Initial Assessment.** Clinical manifestations of this potentially life-threatening electrolyte disorder are mostly insidious and nonspecific. Thus, preoperative assessment of patients at risk should include timely blood testing. There is a common misconception that the cardiac manifestations of hyperkalemia are well known and occur in an orderly fashion. On the contrary, the cardiac clinical symptoms of hyperkalemia may randomly range from nonexistent to vertigo, chest pain, and presyncope to syncope and cardiac arrest. Physical examination may reveal bradycardia and/or bradyarrhythmia and hypotension.76–78 Accompanying ECG changes include peaked T-waves, QRS widening, diminished P waves,79–82 and/or a range of arrhythmias including bradycardia and hyperkopia (10 mg/kg suggested upper limit, but more may be given as needed, up to 30 mg/kg) and/or bradyarrhythmia and hypotension.76 Accompanying ECG changes, multiorgan system failure, and emergentcardiac arrest. Physical examination may reveal bradycardia and/or hypotension.

**Initial Management Steps.** The first management step is avoidance of hyperkalemia and thus postponing of elective surgical cases in the setting of this condition and avoiding succinylcholine and prolonged propofol infusions for urgent/emergent cases with known hyperkalemia.86,95–97 Respiratory acidosis should be corrected normalizing ventilation. Acute hyperventilation is to be avoided because it can contribute to hypotension by reducing venous return. Treatment with β-2 agonists (eg, salbuterol) and glucose with insulin can be initiated to promote potassium shift toward the intracellular compartment.96–101 Combined therapy with β-2 agonists and insulin is more effective than a single agent.102 The literature supports administration of calcium as a membrane stabilizer when ECG changes are present.102 In the setting of ongoing hemorrhage and blood administration (with citrate), preventative therapy with calcium may also be deemed justifiable.

**Subsequent Assessment and Treatment Steps.** If patient volume status is considered adequate and his or her renal

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Hypercapnia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachycardia</td>
<td>Tachypnea in nonparalyzed patients</td>
</tr>
<tr>
<td>Muscle rigidity/masseter spasm</td>
<td>Hyperkemia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial management</th>
<th>Discontinue triggering volatile anesthetics and switch from the anesthesia ventilator to manual Ambu bag ventilation from a separate source of oxygen. If available, switch to a dedicated clean anesthesia ventilator or transport or ICU ventilator when feasible. Continue EtcO₂ monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop surgery or procedure when feasible</td>
<td>If necessary, switch to intravenous anesthetic</td>
</tr>
<tr>
<td>Sodium dantrolene: give 2.5 mg/kg or 1 mg/l initial dose. Repeat bolus of Na dantrolene, titrating to tachycardia and hyperkemia (10 mg/kg suggested upper limit, but more may be given as needed, up to 30 mg/kg)</td>
<td>Begin active cooling; ice packs to groin, axilla, and neck; cold intravenous solutions into the peritoneal cavity when feasible; nasogastric or peritoneal lavage when feasible</td>
</tr>
<tr>
<td>Stop cooling measures at 38°C to avoid overshooting</td>
<td>If hyperkalemia suspected by peaked ECG T waves or intraventricular conduction delay confirmed by high K serum level:</td>
</tr>
<tr>
<td>10 mg/kg calcium chloride, 0.1 U/kg insulin, 50 mL D50w for adult or 1 mL/kg for pediatrics. Repeat as necessary</td>
<td>Metabolic acidosis: 100 mEq of HCO₃⁻ in adults, then titrate to pH 7.2. Normalize pH if confirmed rhabdomyolysis</td>
</tr>
<tr>
<td>Respiratory acidosis: treatment is controversial due to adverse hemodynamic effects of hyperventilation if low-flow state is confirmed. (We suggest an initial goal of modest permissive hypercapnia with a goal EtcO₂ of 50–60 mm Hg)</td>
<td>Dysrhythmias: avoid calcium antagonists after Na dantrolene, potential for worsening hyperkalemia</td>
</tr>
<tr>
<td>Myoglobinemia with oliguria: place Foley catheter; increase rate of fluid resuscitation</td>
<td>Invasive pressure monitoring when feasible, more HCO₃⁻ to neutralize urine pH, consider intravenous mannitol</td>
</tr>
<tr>
<td>Supportive measures for disseminated intravascular coagulation</td>
<td>Call for help, including the MH hotline, if feasible (<a href="http://www.mhaus.org">www.mhaus.org</a>), call 1–800-644-9737 or 1-800-MH-HYPER in the United States and Canada; outside the United States, call 00113144647079</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subsequent management</th>
<th>Monitor for recrudescence for 72 h and treat/cool as required</th>
</tr>
</thead>
</table>
| When the crisis is resolved: consider caffeine–halothane muscle biopsy in vitro contracture test, molecular genetic testing for genetic mutation analysis for patient’s relatives (sensitivity 25%) | Adapted from http://www.mhaus.org/.

Abbreviations: CPK, creatine phosphokinase; D50w, dextrose in water (50%); ECG, electrocardiogram; EtcO₂, end-tidal carbon dioxide; ICU, intensive care unit; K, potassium; MH, malignant hyperthermia.
function of extracorporeal life support should be considered.\textsuperscript{105} Hemodialysis should be initiated as soon as possible after return of spontaneous circulation.\textsuperscript{106,107} There have been reports of successful outcome from hyperkalemic cardiac arrest with hemodialysis being initiated even during CPR.\textsuperscript{108–111} Given that vascular access is often easily available in the operating room, blood purification is a pertinent option during adult hyperkalemic cardiac arrest.\textsuperscript{103} The use of bicarbonate to enhance intracellular shift of potassium is controversial.\textsuperscript{103,104} Selection bias may underlie the association of both therapies with poor cardiopulmonary resuscitation (CPR) outcomes, since both drugs are more likely to be used in critically ill patients and after prolonged CPR.\textsuperscript{102} If hyperkalemia is considered reversible, bridging therapy and extracorporeal life support should be considered.\textsuperscript{105} If hyperkalemia is being treated and the patient is undergoing treatment to definitively lower their serum potassium, the hope of inducing potassium loss. Early and aggressive correction of potassium is important to avoid deterioration to cardiac arrest.\textsuperscript{95} Moderate quality evidence (retrospective observation) supports treatment with IV calcium chloride during adult hyperkalemic cardiac arrest.\textsuperscript{103} The use of bicarbonate to enhance intracellular shift of potassium is controversial.\textsuperscript{103,104} Selection bias may underlie the association of both therapies with poor cardiopulmonary resuscitation (CPR) outcomes, since both drugs are more likely to be used in critically ill patients and after prolonged CPR.\textsuperscript{102} If hyperkalemia is considered reversible, bridging therapy and extracorporeal life support should be considered.\textsuperscript{105} Hemodialysis should be initiated as soon as possible after return of spontaneous circulation.\textsuperscript{106,107} There have been reports of successful outcome from hyperkalemic cardiac arrest with hemodialysis being initiated even during CPR.\textsuperscript{108–111} Given that vascular access is often easily available in the operating room, blood purification is a pertinent option during adult hyperkalemic cardiac arrest occur perioperatively. Table 4 provides a full list of management steps.

### Traumatic Cardiac Arrest

**Epidemiology and Pathophysiology.** Traumatic cardiac arrest (TCA) carries a high mortality rate, but in survivors, the neurological outcome appears to be much better than in other causes of cardiac arrest.\textsuperscript{112,113} Uncontrolled hemorrhage is the main cause of death (48%), followed by tension pneumothorax (13%), asphyxia (13%), and pericardial tamponade (10%).\textsuperscript{114} A large systematic review reported an overall survival rate of 3.3% in blunt and 3.7% in penetrating trauma, with good neurological outcome in 1.6% of all cases.\textsuperscript{112}

**Presentation and Initial Assessment.** Patients in TCA present with loss of consciousness, agonal or absent spontaneous respiration, and absence of a femoral or carotid pulse. The prearrest state is characterized by tachycardia, tachypnea, decreased pulse pressure, and a deteriorating conscious level. Hypotension may present late and beyond 1500 mL of blood loss. Beyond this stage (class III hemorrhagic shock), peripheral pulses will become absent, and the patient left untreated will typically proceed to pulseless electrical dissociation or asystolic cardiac arrest. Resuscitative efforts in TCA should focus on immediate assessment and simultaneous treatment of the hemorrhage and surgical control of the reversible causes (Figure 1).\textsuperscript{113,115}

**Initial Management Steps.** Short prehospital times are associated with increased survival rates for major trauma and TCA. The time elapsed between injury and surgical control of bleeding should be minimized. When feasible, the patient should be immediately transferred to a designated trauma center for damage control resuscitation (DCR).\textsuperscript{116} “Scoop and run” for these patients may be a better choice for survival than engaging on a long resuscitation on the field. While anesthesiologists in many international settings may be involved with prehospital care, being prepared to manage the airway and provide aggressive fluid resuscitation on patient arrival to the emergency room is also paramount. Successful treatment of TCA requires a team approach with all measures carried out rather in parallel than sequentially. The emphasis lies on rapid treatment of all potentially reversible pathology. In cardiac arrest caused by hypovolemia, cardiac tamponade, or tension pneumothorax, chest compressions alone are unlikely to be as effective as in normovolemic cardiac arrest.\textsuperscript{115,117–119} Therefore, chest compressions take a lower priority than the immediate treatment of reversible causes.

Ultrasoundography should be used in the evaluation of the compromised trauma patient to target life-saving interventions if the cause of shock cannot be established clinically.\textsuperscript{116,120}

<table>
<thead>
<tr>
<th>Table 4. Assessment and Management of Severe Hyperkalemia</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Assessment</strong></td>
</tr>
<tr>
<td>Vertigo</td>
</tr>
<tr>
<td>Chest pain</td>
</tr>
<tr>
<td>Syncope</td>
</tr>
<tr>
<td>Bradycardia</td>
</tr>
<tr>
<td>Diminished p-waves on ECG</td>
</tr>
<tr>
<td>Peaked T-waves on ECG</td>
</tr>
<tr>
<td>Wide complex QRS on ECG</td>
</tr>
<tr>
<td>Heart block on ECG</td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
</tr>
<tr>
<td>Ventricular fibrillation</td>
</tr>
<tr>
<td><strong>Initial management</strong></td>
</tr>
<tr>
<td>Cardiac protection</td>
</tr>
<tr>
<td>Administer calcium chloride or calcium gluconate 1–2 g IV</td>
</tr>
<tr>
<td>Repeat as required for ECG signs of hyperkalemia</td>
</tr>
<tr>
<td>Interventions to drive potassium into intracellular space</td>
</tr>
<tr>
<td>(these are temporizing interventions)</td>
</tr>
<tr>
<td>Administer 1 ampule of D50 and 1.0 units of insulin IV</td>
</tr>
<tr>
<td>Administer 50 mEq of sodium bicarbonate</td>
</tr>
<tr>
<td>Administer 4–10 puffs albuterol</td>
</tr>
<tr>
<td>Interventions to eliminate potassium or increase corporeal</td>
</tr>
<tr>
<td>capacity</td>
</tr>
<tr>
<td>Administer 20–40 mg furosemide IV, monitor urine output in</td>
</tr>
<tr>
<td>response. Increase to 1–1.5 mg/kg if oliguric response</td>
</tr>
<tr>
<td>Administer 30 or 60 g of kayexalate OG/NG/PR. Repeat as</td>
</tr>
<tr>
<td>needed</td>
</tr>
<tr>
<td>Initiate renal replacement therapy</td>
</tr>
<tr>
<td>Transfuse washed pRBC (these units are hypokalemic and</td>
</tr>
<tr>
<td>will avidly absorb serum potassium)</td>
</tr>
<tr>
<td>In patients with hyperkalemic cardiac arrest, extracorporeal</td>
</tr>
<tr>
<td>life support is appropriate while the cause of hyperkalemia</td>
</tr>
<tr>
<td>is being treated and the patient is undergoing treatment</td>
</tr>
<tr>
<td>to definitively lower their serum potassium</td>
</tr>
</tbody>
</table>

**Abbreviations:** ECG, electrocardiogram; IV, intravenous; OG, orogastric; NG, nasogastric; PR, per rectum; pRBC, packed red blood cell.
Hemoperitoneum, hemothorax or pneumothorax, and cardiac tamponade can be diagnosed reliably in minutes. Early whole-body computed tomography scanning as part of the primary survey may improve outcome in major trauma. Whole-body computed tomography is increasingly employed to identify the source of shock and to guide subsequent hemorrhage control. Figure 1 shows the traumatic cardiac (peri-) arrest algorithm of the European Resuscitation Council, which is based on the universal ALS algorithm.

Hypovolemia. The treatment of severe hypovolemic shock has several elements. The main principle is to achieve immediate hemostasis. Temporary hemorrhage source control can be lifesaving. External hemorrhage can be treated with direct or indirect compression, pressure dressings, tourniquets, and topical hemostatic agents. Noncompressible hemorrhage is more difficult to control. External splints/pressure, blood and blood products, IV fluids, and tranexamic acid (TXA) can be used during patient transport and until hemorrhage is controlled surgically. Resuscitative endovascular balloon occlusion is a promising alternative to aortic cross-clamping or manual aortic compression in patients exsanguinating from noncompressible torso injuries and can serve as a bridge to definitive hemorrhage control. If the patient is in hypovolemic TCA, immediate restoration of the circulating blood volume with blood products is mandatory. Hyperventilation should be avoided in hypovolemic patients since positive-pressure ventilation may worsen hypotension by impeding venous return to the heart. Therefore, low tidal volumes and slow respiratory rates may be associated with a more acceptable circulation.

Hypoxemia. Hypoxemia due to airway obstruction and loss of ventilator drive has been reported as the cause of 13% of all TCAs. Immediate control of the airway and effective invasive ventilation can reverse hypoxic cardiac arrest. However, positive-pressure ventilation should be applied with caution to limit its deleterious effect on venous return. Oxygen should be delivered at a fraction of 1.0, and ventilation should be monitored with capnography to avoid hyperventilation.

Cardiac Tamponade and Resuscitative Thoracotomy. Cardiac tamponade is the underlying cause of approximately 10% of cardiac arrests in trauma. Where there is TCA and penetrating trauma to the chest or epigastrium, immediate resuscitative thoracotomy (RT; via a clamshell incision) can be life saving. The chance of survival from cardiac injury is about 4 times higher for stab wounds than for a...
gunshot wounds. The guidelines estimate survival rates of approximately 15% for RT in patients with penetrating wounds and 35% for patients with a penetrating cardiac wound. In contrast, survival from RT after blunt trauma is dismal, with reported survival rates of 0%–2%. In the setting of the above presentation (ie, cardiac arrest with penetrating trauma), the prerequisites for a successful RT can be summarized as “4 Es rule” (4E):

1. Expertise: RT teams must be led by a highly trained and competent health care practitioner.
2. Equipment: adequate equipment to carry out RT and to deal with the intrathoracic findings is mandatory.
3. Environment: ideally, RT should be carried out in an operating theatre; RT should not be carried out if there is inadequate physical access to the patient or if the receiving hospital is not easy to reach.
4. Elapsed time: the time from loss of vital signs to commencing an RT should not be >10 minutes.

If any of the 4 criteria are not met, RT is likely less effective and exposes the team to unnecessary risks.

Subsequent Management and Treatment. Damage control resuscitation is a term recently adopted in trauma resuscitation to improve outcome of uncontrolled hemorrhages. DCR combines permissive hypotension and hemostatic resuscitation with limited (damage control) surgical repair. Limited evidence and general consensus have supported a conservative approach to IV fluid infusion, with permissive hypotension until surgical hemostasis is achieved. In the absence of invasive monitoring, fluid resuscitation is titrated to maintain a radial pulse. Hemostatic resuscitation with blood and blood products is used as primary resuscitation fluids to prevent exsanguination, dilution of hemostatic blood components, and trauma-induced coagulopathy. The typical massive transfusion protocol recommends packed red blood cells, fresh frozen plasma, and platelets ratio of 1–2:1:1.

Simultaneous damage control surgery and hemostatic resuscitation using massive transfusion protocol are the principles of DCR in patients with exsanguinating injuries. Although

---

**Figure 2.** An assessment and management algorithm of right heart failure, which should be followed in the case of suspected thrombotic or gaseous pulmonary embolism. CVP indicates central venous pressure; ECMO, extracorporeal membrane oxygenation; Hct, hematocrit; IABP, intra-aortic balloon pump; INO, inhaled nitric oxide; PEEP, positive end-expiratory pressure; pRBC, packed red blood cells; PVR, pulmonary vascular resistance; RV, right ventricular; RVAD, right ventricular assist device; Scvo2, central venous oxygen saturation; Spo2, peripheral oxygen saturation; SVO2, venous oxygen saturation; TEE, transesophageal echocardiography.
the evidence for permissive hypotension during resuscitation is limited, particularly with regards to blunt trauma, permissive hypotension has been endorsed in both civilian (https://www.nice.org.uk/guidance/ta74) and military care, generally aiming for an SBP of 80–90 mm Hg. Caution is advised for patients with traumatic brain injury in whom a raised intracranial pressure may require a higher cerebral perfusion pressure. Specifically, the most recent Brain Trauma Foundation Guidelines for severe traumatic brain injury recommend maintaining an SBP ≥100 mm Hg for patients 50–69 years of age or ≥110 mm Hg for patients 15–49 years of age or older than 70 to improve outcomes and reduce mortality.138

Finally, TXA (loading dose 1 g over 10 minutes followed by infusion of 1 g over 8 hours) increases survival from traumatic hemorrhage. It is effective when administered within the first 3 hours after trauma; however, TXA should not be started any later than 4 hours after the injury because late dosing is associated with increased mortality.

### Pulmonary Embolism

**Epidemiology and Pathophysiology.** Thromboembolism, venous gas embolism, and fat embolism are all well-recognized complications that can occur during anesthesia and surgery. Venous thromboembolism is the most common cause of PE in perioperative patients. Prophylaxis reduces its incidence, but cannot entirely prevent its occurrence. Thromboembolism causes circulatory crisis via a combination of mechanical obstruction and the release of inflammatory mediators, both of which increase the right ventricular (RV) afterload. In severe cases, the associated increase in pulmonary vascular resistance is so great that the right ventricle is unable to maintain the cardiac output. As the RV fails, it typically dilates, and the interventricular septum flattens and shifts toward the left ventricle.

**Presentation and Initial Assessment.** Signs of PE under general anesthesia include the following: unexplained hypotension with concurrent decrease in EtCO₂ desaturation that is only moderately responsive to increased Fio₂; transitory bronchospasms with increased airway resistance; rapid changes of heart rhythm (often dysrhythmias or bradycardia after a transitory tachycardia); unexplained increased of central venous pressure or all pulmonary pressures; and rapid progression to nonshockable cardiac arrest (usually PEA).

**Management Steps.** A strategy for managing RV shock in this situation is proposed in Figure 2. In approximately 5% of cases, acute thromboembolism causes cardiac arrest, most often PEA. Echocardiography of the patient with RV shock will typically reveal RV dilation and dysfunction, with an underfilled left ventricle.

The management of intraoperative or perioperative thromboembolism is highly dependent on the procedure and patient. Therapeutic options range from supportive measures only to anticoagulation to thrombolysis.

**Epidemiology and Pathophysiology.** Gas embolism is an important cause of circulatory crisis and cardiac arrest in perioperative patients. As the number of procedures in which minimally invasive techniques involving gas insufflation increases, the frequency of intraoperative gas embolisms will likely increase. The risk for a venous air embolism increases when the surgical field is above the right atrium, particularly in patients with central venous pressure. The focus of hemodynamic support is on improving RV function.

**Common causes of gas embolism include laparoscopy, endobronchial laser procedures, central venous catheterization or catheter removal, hysteroscopy, pressurized wound irrigation, prone spinal surgery, posterior fossa surgery in the sitting position, and endoscopic retrograde cholangiopancreatography. Nonoperative cause of vascular air embolism includes direct vascular access procedures and pressurized hemoperfusion.**

**Management Steps.** All surgical procedures at risk of venous gas embolism should be specifically monitored. Right parasternal precordial Doppler ultrasound has very high sensitivity for air embolism (88%). Transesophageal echocardiography allows for recognition of air embolism size and location and assessment of ventricular function, but can be difficult or impossible to perform with some patient positions (eg, sitting) or procedures (eg, endoscopic retrograde cholangiopancreatography). Massive gas embolisms in awake patients have been characterized by breathlessness, continuous coughing, arrhythmias, myocardial ischemia, acute hypotension with loss of end-tidal carbon dioxide, and cardiac arrest. Patients who survive any kind of an embolic event are likely to require continued evaluation and management for several hours in an ICU setting. Table 5 provides a full list of management steps.

| Table 5. Assessment and Management of Massive or Submassive Pulmonary Embolism |
|---|---|
| **Assessment** | Significant hemodynamic instability or collapse during cases with high risk of thrombotic or air embolus EtCO₂ that suddenly declines Increased airway pressures Consider early use of TEE to confirm diagnosis/rule out other treatable causes of pulmonary embolism |
| **Initial management** | Prearrest If possible, stop the infusion of the gas or ask the surgeon to flood the surgical field Administer 100% oxygen and intubate for significant respiratory distress or refractory hypoxemia Place patient in Trendelenburg (head down) position and rotate toward the left lateral decubitus position Maintain BP with fluid resuscitation and vasopressors/β-adrenergic agents if necessary. (See the algorithm for RV failure) Consider transfer to a hyperbaric chamber if immediately available |
| **Cardiac arrest** | Circulatory collapse should be addressed with CPR and consideration of CPB/emergent thrombectomy if available |
| **Subsequent management** | Consider the right ventricular shock algorithm |

Abbreviations: BP, blood pressure; CPB, cardiopulmonary bypass; RV, right ventricular; CPR, cardiopulmonary resuscitation; TEE, transesophageal echocardiography.
Postresuscitation Management
It is beyond the scope of this article to detail the appropriate steps of postresuscitation management. Current guidelines are available that specify the appropriate management steps to maximize discharge from the hospital with a favorable neurological function as most important outcome parameters. Neurological, cardiovascular, and respiratory dysfunction are best managed in specialized ICUs where monitoring of electroencephalogram, targeted temperature management, glucose management, correction of electrolytes, and management of blood gas parameters are all promptly available.151–153

CONCLUSIONS
The causes, logistics, and management of perioperative crises and arrest differ substantially from those taught in the American Heart Association ACLS guidelines. Furthermore, current evidence illustrates the need for educational updates on concerning PPCA among the anesthesiology community, including review of current evidence, use of checklists, and simulation.11,154–157 The purpose of this review is to present the latest evidence and practical recommendations for managing 7 high-stakes perioperative events that can lead to significant circulatory disturbance and PPCA. These are core topics for all practitioners who care for patients in the perioperative setting, but they by no means represent an exhaustive list of emergency conditions. It is incumbent upon all anesthesiologists to have a working knowledge of these clinical scenario and understanding of the current therapeutic options to maximize patient outcomes.

DISCLOSURES
Name: Matthew D. McEvoy, MD.
Contribution: This author helped in the conception, and helped write the manuscript, edit the manuscript, and finally approve the manuscript.
Conflicts of Interest: M. D. McEvoy received funding from GE Foundation, Edwards Life Sciences, and Cheetah Medical, all unrelated to this manuscript.
Name: Karl-Christian Thies, MD, FRCA, FERC, DEAA.
Contribution: This author helped in the conception, and helped write the manuscript, edit the manuscript, and finally approve the manuscript.
Conflicts of Interest: None.
Name: Sharon Einav, MD.
Contribution: This author helped in the conception, and helped write the manuscript, edit the manuscript, and finally approve the manuscript.
Conflicts of Interest: None.
Name: Kurt Ruetzler, MD.
Contribution: This author helped in the conception, and helped write the manuscript, edit the manuscript, and finally approve the manuscript.
Conflicts of Interest: None.
Name: Vivek K. Moitra, MD, FCCM.
Contribution: This author helped in the conception, and helped write the manuscript, edit the manuscript, and finally approve the manuscript.
Conflicts of Interest: None.
Name: V. K. Moitra declares the following conflicts of interest: liaison between the American Society of Anesthesiologists and the American Heart Association; expert testimony.
Name: Mark E. Nunnally, MD, FCCM.
Contribution: This author helped in the conception, and helped write the manuscript, edit the manuscript, and finally approve the manuscript.
Conflicts of Interest: None.

REFERENCES
10. Murray DJ, Boulet JR, Kras JE, Woodhouse JA, Cox T, McAllister JD. Acute care skills in anesthesia


