Short- and long-term mortality associated with new-onset atrial fibrillation after coronary artery bypass grafting: A systematic review and meta-analysis

Roop Kaw, MD,a,b Adrian V. Hernandez, MD, MSc, PhD,c Iqbal Masood, MD,a A. Marc Gillinov, MD,d Walid Saliba, MD,e and Eugene H. Blackstone, MDc,d

Objectives: Our objectives were to evaluate short- and long-term mortality associated with new-onset atrial fibrillation after coronary artery bypass grafting and to identify preoperative and intraoperative patient characteristics associated with new-onset atrial fibrillation.

Methods: Three independent investigators comprehensively reviewed the literature using Medline from 1960, Web of Science from 1980, and Scopus from 1960. All searches were done through December 2009. Selected cohort studies were used to evaluate associations between new-onset atrial fibrillation after coronary artery bypass grafting or coronary bypass plus valve and short-term mortality (defined as 30-day or in-hospital mortality) and long-term mortality (defined as mortality ≥ 6 months). We excluded studies involving atrial flutter, off-pump coronary bypass, and isolated valve surgery. Heterogeneity among studies was accounted for by meta-analysis with random-effects models.

Results: Eleven studies (n = 40,112) met our inclusion criteria. New-onset atrial fibrillation was associated with higher short-term mortality (3.6% vs 1.9%; odds ratio [OR], 2.29; 95% confidence interval [CI], 1.74–3.01; P < .00001; heterogeneity of effects, P = .002). Mortality risks at 1 year and 4 years were 2.56 (95% CI, 2.14–3.08) and 2.19 (95% CI, 1.97–2.45; P < .0001), respectively. Older age, lower ejection fraction, history of hypertension, heart failure, prior stroke, peripheral arterial disease, and longer cardiopulmonary bypass and aortic clamp times were associated with new-onset atrial fibrillation. Preoperative use of β-blockers reduced occurrence of new-onset atrial fibrillation (OR, 0.94 [95% CI, 0.88–1.01; P = .08]), whereas angiotensin-converting enzyme inhibitors increased it (OR, 1.20 [95% CI, 1.11–1.29], P < .00001).

New-onset atrial fibrillation (AF) remains the most common complication after cardiac surgery, with little change over the past 2 decades. It occurs in 25% to 40% of patients after coronary artery bypass grafting (CABG) and in up to 62% after a combined CABG and valve procedure.¹

New-onset AF is widely known to increase morbidity after cardiac surgery,²-⁵ and several studies have shown increased in-hospital and long-term mortality, but this association is not well established or clearly understood.²-⁸ However, other studies have not reported new-onset AF to have an independent effect on in-hospital mortality.⁹ Additionally, information related to new-onset AF comes mostly from single-institution studies. Therefore, the primary purpose of our meta-analysis was to evaluate the short- and long-term mortality of new-onset AF after CABG. Secondly, we also evaluated preoperative, intraoperative, and postoperative variables associated with the occurrence of new-onset AF.

METHODS
Study Selection
We conducted a comprehensive literature search using Medline from 1960 through December 2009, The Web of Science from 1980 through December 2009, and Scopus from 1960 through December 2009. We
restricted our search to observational cohort studies and used the following
key words: AF, cardiac surgery or cardiac surgical procedures or CABG
surgery, mortality or death or outcomes, and determinants or risk factors.
We also used MeSH and TIAB terms for the Medline search. All published
studies that evaluated the occurrence of short-term (in-hospital or within 30
days) and long-term (≥6 months) mortality in patients with new-onset AF
after CABG with or without valve surgery were identified. In these studies,
new-onset AF was defined as persistent AF of any duration at any time
postoperatively by physician assessment on the basis of a rhythm strip or
12-lead electrocardiographic recording. Results of the combined search
were limited to studies of adult humans published in English, Spanish,
French, and German.

A list of retrieved articles was reviewed independently by 3 investiga-
tors (R.K., I.M., and A.V.H.) to choose potentially relevant articles.
When multiple articles for a single study had been published, we used
the latest publication and supplemented it, if necessary, with data from
earlier publications. Only studies that clearly identified mortality and
perioperative variables in tables or text for both new-onset AF and non–
new-onset AF groups were included in the final data set. We excluded
studies of atrial flutter and tachycardia, off-pump CABG procedures, and
new-onset AF groups were included in the final data set. We excluded
perioperative variables in tables or text for both new-onset AF and non–
earlier publications. Only studies that clearly identified mortality and
were limited to studies of adult humans published in English, Spanish,
French, and German.

A list of retrieved articles was reviewed independently by 3 investiga-
tors (R.K., I.M., and A.V.H.) to choose potentially relevant articles.
When multiple articles for a single study had been published, we used
the latest publication and supplemented it, if necessary, with data from
earlier publications. Only studies that clearly identified mortality and
perioperative variables in tables or text for both new-onset AF and non–
new-onset AF groups were included in the final data set. We excluded
studies of atrial flutter and tachycardia, off-pump CABG procedures, and
isolated valve surgery. All studies in which the main purpose of the publi-
cation was to evaluate a treatment or intervention were also excluded, un-
less preoperative or intraoperative information was useful for the purpose
of our study.

Data Extraction
Data were extracted by 3 investigators (I.M., A.V.H., and R.K.) and the
results compiled. Disagreement was resolved by consensus. Using a stan-
dardized data extraction form, we collected information on lead author,
publication year, study design, sample size, and proportion of patients
with early and late mortality. The following preoperative summary informa-
tion was collected from each study for the new-onset and non–new-onset
AF groups: age, gender, history of hypertension, myocardial infarction
(MI), heart failure (HF), diabetes mellitus (DM), chronic renal insuffi-
ciency, stroke, peripheral arterial disease (PAD), chronic obstructive pul-
monary disease (COPD), and smoking; left ventricular ejection fraction
(LVEF), use of beta-blockers (β-blockers), angiotensin-converting enzyme
inhibitors (ACEI) and intra-aortic balloon pump (IABP). Information about
intraoperative (cardiopulmonary bypass [CPB] time, use of IABP, aortic
clamp time, and use of inotropes) and postoperative outcomes (length of
hospital stay, respiratory failure, postoperative HF, stroke, and MI) was
also collected.

Validity and Study Quality Assessment
Prospective cohort studies were considered to be of higher quality than
retrospective cohort studies. Case–control studies that were specifically
designed to assess the influence of risk factors on occurrence of new-
onset AF were considered to be of higher quality than studies that used
a nested case–control design, either by identifying cases of new-onset
AF by hospital discharge registers or by using existing patient registries.

Statistical Analysis
First, we evaluated the association between new-onset AF after CABG
and short- and long-term all-cause mortality. We used the Mantel–Haenszel
method to calculate pooled odds ratios (OR) and 95% confidence interval
(CIs) methods for mortality.10 Because mortality statistics are scarce and the
proportion of new-onset AF patients low, the Mantel–Haenszel method was
preferred. We also used DerSimonian and Laird random effects models,
and statistical heterogeneity was evaluated as described elsewhere.11 Pub-
lication bias was assessed graphically with funnel plots. We did not have
access to individual patient-level data, and therefore no adjustment was
possible for potential confounders of the association between new-onset
AF and mortality. We used Review Manager (RevMan, version 5.0 for Win-
dows, Oxford, United Kingdom; The Cochrane Collaboration, 2008).

Long-term mortality was reported at different time points (6 months, 1
and 4 years). We calculated unreported mortality from the reported Ka-
plan–Meier curves when available. With the exception of one, most studies
did not report the number of patients at risk per time point, which discount
patients who died or were lost to follow-up, and we could not use this in-
formation in the analysis. Given the circumstances under which IABP is
used, we chose to combine the reported intraoperative and postoperative
use for purposes of analysis. Preoperative IABP use was analyzed
separately.

Sensitivity Analysis
To explore the strength of the association between new-onset AF and
mortality, we removed studies with fewer than 500 patients with new-
onset AF, removed studies whose populations underwent CABG plus valve
surgery, and used fixed-effects models. After exclusion of studies with fewer
than 500 patients, a total of 38,292 patients remained of whom
28,800 underwent CABG only. No differences were found between random
and fixed models, and only random-effects models are reported.
We evaluated the association between patient characteristics (pre opera-
tive and intraoperative) and new-onset AF. We used the Mantel–Haenszel
method to calculate pooled OR for categorical characteristics or mean dif-
fERENCE for continuous characteristics and their 95% CIs. Also, because
statistically significant clinical heterogeneity among studies was expected,
we used the DerSimonian and Laird random-effects models. Statistical
heterogeneity of effects was evaluated with the Cochran χ² test and the
I² statistic. The overall effect was calculated with the Z test. Finally, we de-
scribed the associations between postoperative outcomes and new-onset
AF, which do not necessarily have a temporal relationship.

RESULTS
Study Characteristics
A total of 927 citations were identified and screened, of which 46 were retrieved for more detailed information
(Figure 1). Of these, 34 did not fit our criteria, major reasons for exclusion being inclusion of patients with AF preopera-
tively, heart transplantation, valve-only procedures, and aortic surgery. We chose 12 studies. We did not get a re-
sponse from the authors of 1 study, and it was eliminated from the analysis. Thus, we finally included 11 cohort stud-
ies2-9,12-14 (n = 40,112; 5 prospective2,5-8), which were

Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEI</td>
<td>angiotensin-converting enzyme inhibitors</td>
</tr>
<tr>
<td>AF</td>
<td>atrial fibrillation</td>
</tr>
<tr>
<td>CABG</td>
<td>coronary artery bypass grafting</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CPB</td>
<td>cardiopulmonary bypass</td>
</tr>
<tr>
<td>DM</td>
<td>diabetes mellitus</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>IABP</td>
<td>intra-aortic balloon pumping</td>
</tr>
<tr>
<td>LVEF</td>
<td>left ventricular ejection fraction</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PAD</td>
<td>peripheral arterial disease</td>
</tr>
</tbody>
</table>
published between 1996 and 2009 (Table 1). Overall, all patients underwent CABG, 97% underwent CABG only (9 studies), and the remaining 2 studies included patients who underwent CABG plus valve surgery.

Description of Patient Characteristics

On average, three quarters of patients were male and received β-blockers, two thirds had hypertension, 40% had prior MI or smoked, a quarter had DM, and 10% had prior stroke. The means ± standard deviations for age and LVEF were 64 ± 8 years and 54% ± 13%, respectively. As shown in Table 1, patients were clinically heterogeneous among studies.

Intraoperative and postoperative information were not consistently reported across studies. Mean CPB and aortic clamp times were 92 ± 35 and 51 ± 22 minutes, respectively; only 2% of patients needed IABP. Inotrope use was reported in only 3 studies. Among the postoperative complications, respiratory failure (10%) was the most common. Other complications were uncommon: HF 3%, stroke 2%, and MI 4%. Mean postoperative length of stay was 7.3 ± 4.2 days.

Association Between Postoperative Non–New-Onset AF and Both Short- and Long-Term Mortality

All studies evaluated short-term mortality. New-onset AF was associated with higher short-term mortality (new-onset AF: 368/10,330 [3.6%] vs non–new-onset AF: 552/29,772 [1.9%]; OR, 2.29; 95% CI, 1.74–3.01; P < .00001; Figure 2). There was important statistical heterogeneity among the mortality effects (I² = 64%, P = .002), and no evidence of publication bias. The association between new-onset AF and short-term mortality remained similar after removal of studies with fewer than 500 new-onset AF patients (OR, 2.34 [95% CI, 1.75–3.13]), and after removal of the 2 studies including CABG plus valve surgery (OR, 2.61 [95% CI, 2.06–3.29]).

Five studies evaluated long-term mortality. New-onset AF was also associated with mortality at 1 year (new-onset AF: 256/3728 [6.9%] vs non–new-onset AF: 462/13,619 [3.4%]; OR, 2.56 [95% CI, 2.14–3.08]; P < .00001) and at 4 years (new-onset AF: 574/3728 [15%] vs non–new-onset AF: 1199/13,619 [8.8%]; OR, 2.19 [95% CI, 1.97–2.45]; P < .00001; Figure 3). These risks were similar to the short-term mortality risks. There was little statistical heterogeneity of the long-term risks among studies. Only 2 studies evaluated mortality at 8 years, and risk of mortality was in the same direction (new-onset AF: 623/2164 [29%] vs non–new-onset AF: 1140/6876 [17%]; OR, 2.01 [95% CI, 1.80–2.25]; P < .00001).

Association of Preoperative, Intraoperative, and Postoperative Variables With Postoperative New-Onset AF

Table 2 shows the associations between preoperative and intraoperative variables and postoperative new-onset AF. Older age, lower LVEF, prior stroke, and history of hypertension, HF, and PAD were strongly associated with postoperative new-onset AF. History of MI and chronic renal insufficiency also were associated with increased the risk of new-onset AF, but in lower magnitude. Male gender, history of DM, and smoking were not associated with new-onset AF.

Preoperative use of β-blockers limitedly reduced the relative risk of new-onset AF by 6% (OR, 0.94 [95% CI, 0.88–1.01]; P = .08), and the effects among studies were consistent (P for heterogeneity = .4). Use of ACEI was associated with an increased risk of new-onset AF (OR, 1.20 [95% CI, 1.11–1.29]; P < .00001). However, this association was based on only 3 studies. Four studies reported preoperative IABP and this was associated with new-onset AF (OR, 1.46 [95% CI, 1.25–1.70]; P < .00001).

Six studies reported longer CPB time was associated with new-onset AF (mean difference, 4.73 [95% CI, 2.40–7.05]; P < .0001), and 5 studies reported longer aortic clamp time was associated with new-onset AF (mean difference, 4.13 [95% CI, 1.81–6.45]; P = .0005). Five studies reported postoperative and 1 study reported intraoperative IABP use. We found a weak relation between intraoperative/postoperative use of IABP and new-onset AF (OR, 1.57 [95% CI, 0.92–2.66]; P = .10). Use of intraoperative inotropes was also associated with new-onset AF (OR, 2.05 [95% CI, 1.15–3.65]; P = .02). All these associations were heterogeneous among studies.
We also evaluated the relationship between postoperative outcome variables and new-onset AF, although most studies did not specify whether these complications preceded or followed the occurrence of new-onset AF. Postoperative stroke (OR, 2.23 [95% CI, 1.78–2.80]) and respiratory failure (OR, 2.30 [95% CI, 1.71–3.11]) were associated with higher risk of new-onset AF. Postoperative MI (OR, 0.98 [95% CI, 0.56–1.71]) and HF (OR, 1.82 [95% CI, 0.78–4.23]) were not related to new-onset AF. Patients experiencing new-onset AF had a longer postoperative length of stay by median 1.48 days (95% CI, 0.78–4.23). We also evaluated the relationship between postoperative outcome variables and new-onset AF, although most studies did not specify whether these complications preceded or followed the occurrence of new-onset AF. Postoperative stroke (OR, 2.23 [95% CI, 1.78–2.80]) and respiratory failure (OR, 2.30 [95% CI, 1.71–3.11]) were associated with higher risk of new-onset AF. Postoperative MI (OR, 0.98 [95% CI, 0.56–1.71]) and HF (OR, 1.82 [95% CI, 0.78–4.23]) were not related to new-onset AF. Patients experiencing new-onset AF had a longer postoperative length of stay by median 1.48 days (95% CI, 0.78–4.23).

DISCUSSION

Principal Findings

Mortality. Our analysis provides convincing evidence that both short- and long-term mortality are increased when new-onset AF is diagnosed after CABG. The increase in in-hospital mortality was seen in all studies included in the meta-analysis. Although heterogeneous, the effect persisted after excluding studies with small numbers of patients and studies of combined CABG and valve surgery. The effect of new-onset AF on mortality persisted at 6 months, 1 year, and 4 years and was similar to short-term mortality risk, although only a few long-term studies were available.

Earlier studies did not report increased mortality from new-onset AF after cardiac surgery. Recently, Kalavrouziotis and associates did not report new-onset AF to have an independent effect on in-hospital mortality (OR, 0.8 [95% CI, 0.6–1.2]) in 2 comparable risk-adjusted and propensity-matched groups of patients after cardiac surgery. The study, however, lacked data on use of rate or rhythm control medication postoperatively. The earliest data on new-onset AF after cardiac surgery is from studies of combined CABG and valve surgery. The effect of new-onset AF on mortality persisted at 6 months, 1 year, and 4 years and was similar to short-term mortality risk, although only a few long-term studies were available.

![FIGURE 2. Short-term mortality risks associated with new-onset atrial fibrillation. AF, Atrial fibrillation; M–H, Mantel–Haenszel; CI, confidence interval.](image-url)
the association of new-onset AF after cardiac surgery with intermediate-term (6-month) mortality were reported by Almassi and colleagues\(^5\) (new-onset AF 9.4\% vs non–new-onset AF 4.2\%; \(P < .001\)). Villareal and associates\(^3\) also found that new-onset AF was associated with a higher risk of in-hospital mortality (OR, 1.5 [95\% CI, 1.3–1.8]; \(P < .0001\)). So that its impact on estimates of later outcomes would be reduced, in-hospital mortality was censored, but the adverse mortality persisted after case–control matching (OR, 3.4 [95\% CI, 1.6–7.5]). More important, however, the etiology and pathophysiology of new-onset AF still remain largely unclear.\(^15\)

Five studies looked at long-term mortality from new-onset AF after CABG.\(^3\)–\(^7\),\(^8\) Of these, only 2 studies\(^7\),\(^8\) specifically investigated autopsy results, with 82 and 331 deaths, respectively. Mariscalco and colleagues\(^7\) followed 1832 patients (570 with new-onset AF) for up to 6 years and Ahlsson and colleagues\(^8\) followed 1419 patients (419 with new-onset AF) up to 9 years after CABG. A higher number of deaths owing to cerebral events (51/82 vs 20/419) was reported by Mariscalco and colleagues,\(^7\) although some of the difference in mortality resulting from cerebral events could be related to how new-onset AF was treated. Direct-current cardioversion was tried at the first postoperative visit, after previously attempted pharmacologic cardioversion had failed. In Ahlsson and colleagues’ study,\(^8\) the main treatment for new-onset AF was electrical as opposed to pharmacologic cardioversion (with amiodarone) and ischemic/embolic strokes were confirmed in all patients by computed tomography.

More patients (70/140) with new-onset AF died of cardiac causes (including MI and congestive HF) in Ahlsson and colleagues’ study\(^8\) than of similar causes in the Mariscalco study\(^7\) (31/82). The number of deaths from acute MI and HF were too low for any predictive estimate but seemed to occur constantly during the follow-up time frame. A constant hazard rate was demonstrated in a subsequent study,\(^4\) which did not report autopsy data. There seemed to be an earlier trend to mortality from cerebral events in the study by Mariscalco and colleagues.\(^7\) To see whether there were any differences over time, Ahlsson and associates\(^8\) separated the patients postoperatively into groups with and without AF, but no differences were noted with respect to any single cause of death.

The mechanisms by which new-onset AF is associated with higher mortality are purely speculative and beyond the scope of our analysis. It is currently unknown whether patients who have new-onset AF can also have left ventricular dysfunction, chronic or persistent AF, or thromboembolic phenomena. Some case series and animal experiments have shown that AF with rapid ventricular response can predispose to dilated cardiomyopathy within

TABLE 1. Continued

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>AF Events</th>
<th>Total (n)</th>
<th>non-AF Events</th>
<th>Total (n)</th>
<th>Weight</th>
<th>Odds Ratio (M-H, Random, 95% CI)</th>
<th>Odds Ratio (M-H, Random, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahlsson 2009</td>
<td>50</td>
<td>419</td>
<td>70</td>
<td>1000</td>
<td>8.3%</td>
<td>1.80 [1.23, 2.64]</td>
<td>2.11 [1.46, 3.02]</td>
</tr>
<tr>
<td>Mariscalco 2008</td>
<td>57</td>
<td>570</td>
<td>63</td>
<td>1262</td>
<td>8.7%</td>
<td>1.21 [1.46, 3.07]</td>
<td>2.13 [1.78, 2.55]</td>
</tr>
<tr>
<td>Mariscalco 2009</td>
<td>209</td>
<td>1745</td>
<td>353</td>
<td>5876</td>
<td>37.2%</td>
<td>2.13 [1.78, 2.55]</td>
<td>2.34 [1.99, 2.76]</td>
</tr>
<tr>
<td>Villareal 2004</td>
<td>258</td>
<td>2594</td>
<td>994</td>
<td>713</td>
<td>45.9%</td>
<td>2.13 [1.78, 2.55]</td>
<td>2.34 [1.99, 2.76]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>3728</td>
<td>13619</td>
<td>100.0%</td>
<td>2.19 [1.97, 2.45]</td>
<td>2.19 [1.97, 2.45]</td>
<td>2.19 [1.97, 2.45]</td>
<td>2.19 [1.97, 2.45]</td>
</tr>
</tbody>
</table>

| Heterogeneity: Tau² = 0.00; Chi² = 1.81, df = 3 (P = 0.61); I² = 0% |
|-------------------|-----------|-----------|---------------|-----------|--------|-------------------------------|-------------------------------|
| Test for overall effect: Z = 14.01 (P < 0.00001) |

FIGURE 3. Four-year mortality risks associated with new-onset atrial fibrillation. AF, Atrial fibrillation; M–H, Mantel–Haenszel; CI, confidence interval.
<table>
<thead>
<tr>
<th>Variable</th>
<th>No. of studies</th>
<th>Yes: Mean (SD)</th>
<th>No: Mean (SD)</th>
<th>Association effect [95% CI]</th>
<th>P for effect</th>
<th>P for heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (y)</td>
<td>9</td>
<td>68.2 (6.3)</td>
<td>63.1 (8.1)</td>
<td>MD 4.73 [4.01-5.45]</td>
<td><.00001</td>
<td><.00001</td>
</tr>
<tr>
<td>(n = 8,094)</td>
<td></td>
<td>(n = 24,091)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male gender</td>
<td>11</td>
<td>8,133/10,330 (78.7%)</td>
<td>23,068/29,772 (77.5%)</td>
<td>OR 1.04 [0.97-1.12]</td>
<td>.3</td>
<td>.2</td>
</tr>
<tr>
<td>Hypertension</td>
<td>10</td>
<td>6,465/10,070 (64.2%)</td>
<td>17,786/29,218 (60.9%)</td>
<td>OR 1.19 [1.13-1.26]</td>
<td><.00001</td>
<td>.3</td>
</tr>
<tr>
<td>Prior stroke</td>
<td>10</td>
<td>1,229/10,070 (12.2%)</td>
<td>2,564/31,545 (8.1%)</td>
<td>OR 1.42 [1.16-1.72]</td>
<td>.0005</td>
<td><.00001</td>
</tr>
<tr>
<td>MI</td>
<td>9</td>
<td>3,236/6,457 (50.1%)</td>
<td>7,845/18,449 (42.5%)</td>
<td>OR 1.04 [0.97-1.12]</td>
<td>.3</td>
<td>.2</td>
</tr>
<tr>
<td>HF</td>
<td>5</td>
<td>1,185/4,993 (23.7%)</td>
<td>2,487/14,870 (16.7%)</td>
<td>OR 1.39 [1.28-1.51]</td>
<td><.00001</td>
<td>.7</td>
</tr>
<tr>
<td>PAD</td>
<td>8</td>
<td>1,464/8,282 (17.7%)</td>
<td>3,321/24,501 (13.6%)</td>
<td>OR 1.37 [1.20-1.58]</td>
<td><.00001</td>
<td>.003</td>
</tr>
<tr>
<td>DM</td>
<td>10</td>
<td>2,464/9,187 (26.8%)</td>
<td>6,605/26,960 (24.5%)</td>
<td>OR 0.99 [0.90-1.10]</td>
<td>.9</td>
<td>.007</td>
</tr>
<tr>
<td>Chronic renal insufficiency</td>
<td>4</td>
<td>299/3,702 (8.1%)</td>
<td>827/12,378 (6.1%)</td>
<td>OR 1.58 [1.11-2.24]</td>
<td>.01</td>
<td>.008</td>
</tr>
<tr>
<td>COPD</td>
<td>9</td>
<td>1,367/8,166 (16.7%)</td>
<td>3,123/22,896 (13.6%)</td>
<td>OR 1.45 [1.35-1.56]</td>
<td><.00001</td>
<td>.9</td>
</tr>
<tr>
<td>Smoking</td>
<td>6</td>
<td>1,256/3,401 (36.9%)</td>
<td>4,895/11,156 (43.9%)</td>
<td>OR 0.90 [0.74-1.10]</td>
<td>.3</td>
<td>.0007</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>5</td>
<td>54.7 (12.1)</td>
<td>54.0 (13.3)</td>
<td>MD –0.92 [–1.43, –0.40]</td>
<td>.0005</td>
<td>.7</td>
</tr>
<tr>
<td>(n = 3,443)</td>
<td></td>
<td>(n = 11,795)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ß-Blocker use</td>
<td>7</td>
<td>5,049/6,899 (73.2%)</td>
<td>12,560/16,845 (74.6%)</td>
<td>OR 0.94 [0.88-1.01]</td>
<td>.08</td>
<td>.4</td>
</tr>
<tr>
<td>(n = 3,443)</td>
<td></td>
<td>(n = 11,795)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACEI use</td>
<td>3</td>
<td>1,875/4,120 (45.5%)</td>
<td>3,985/9,716 (41.0%)</td>
<td>OR 1.20 [1.11-1.29]</td>
<td><.00001</td>
<td>.7</td>
</tr>
<tr>
<td>Intraoperative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPB time (min)</td>
<td>6</td>
<td>97.1 (35.7)</td>
<td>90.0 (35.4)</td>
<td>MD 4.73 [2.40–7.05]</td>
<td><.0001</td>
<td>.0003</td>
</tr>
<tr>
<td>(n = 6,270)</td>
<td></td>
<td>(n = 16,794)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC time (min)</td>
<td>5</td>
<td>55.4 (23.4)</td>
<td>49.9 (21.6)</td>
<td>MD 4.13 [1.81–6.45]</td>
<td>.0005</td>
<td><.0001</td>
</tr>
<tr>
<td>(n = 5,127)</td>
<td></td>
<td>(n = 14,082)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of IABP</td>
<td>6</td>
<td>161/6,145 (2.6%)</td>
<td>296/16,308 (1.8%)</td>
<td>OR 1.57 [0.92–2.66]</td>
<td>.1</td>
<td><.0001</td>
</tr>
<tr>
<td>Use of inotropes</td>
<td>3</td>
<td>685/2,830 (24.2%)</td>
<td>1,580/11,692 (13.5%)</td>
<td>OR 2.05 [1.15–3.65]</td>
<td>.02</td>
<td><.00001</td>
</tr>
<tr>
<td>Postoperative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>11</td>
<td>335/10,328 (3.2%)</td>
<td>468/29,769 (1.6%)</td>
<td>OR 2.23 [1.78–2.80]</td>
<td><.00001</td>
<td>.04</td>
</tr>
<tr>
<td>(n = 5,157)</td>
<td></td>
<td>(n = 14,017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>5</td>
<td>608/3,589 (16.9%)</td>
<td>1,221/13,335 (9.2%)</td>
<td>OR 2.30 [1.71–3.11]</td>
<td><.00001</td>
<td>.0006</td>
</tr>
<tr>
<td>HF</td>
<td>4</td>
<td>168/3,824 (4.4%)</td>
<td>333/11,725 (2.8%)</td>
<td>OR 1.82 [0.78-4.23]</td>
<td>.2</td>
<td><.00001</td>
</tr>
<tr>
<td>MI</td>
<td>7</td>
<td>241/6,527 (3.7%)</td>
<td>858/18,621 (4.6%)</td>
<td>OR 0.98 [0.56-1.71]</td>
<td>.9</td>
<td><.00001</td>
</tr>
<tr>
<td>Length of stay (d)</td>
<td>6</td>
<td>9.8 (5.0)</td>
<td>8.2 (3.9)</td>
<td>MD 1.48 [1.09–1.87]</td>
<td><.00001</td>
<td><.0001</td>
</tr>
<tr>
<td>(n = 5,157)</td>
<td></td>
<td>(n = 14,017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AF, Atrial fibrillation; CI, confidence interval; MD, mean difference; OR, odds ratio; MI, myocardial infarction; HF, heart failure; PAD, peripheral arterial disease; DM, diabetes mellitus; COPD, chronic obstructive pulmonary disease; LVEF, left ventricular ejection fraction; ACEI, angiotensin-converting enzyme inhibitors; CPB, cardiopulmonary bypass; AC, aortic clamp; IABP, intra-aortic balloon pump; MI, myocardial infarction. *Shown as weighted mean (standard deviation) (total) for continuous variables and n/total (%) for categorical variables.
weeks. Higher release of creatine kinase MB has been reported in patients with new-onset AF as compared with patients without new-onset AF, implying a myocardial injury mechanism. Increased mortality from new-onset AF may also be related to its treatment, especially with antiarrhythmic medications and anticoagulants. In regard to late mortality with autopsy data, both authors (Mariscalco and Ahlsson) explain late mortality on the basis of higher propensity for subsequent atrial arrhythmias, although the 1-year prevalence of AF after cardiac surgery is reported at 1% to 2%. Only 1 study looked at the absence of predischarge AF and showed that AF occurring during follow-up in the group without predischarge AF (but not in the group with predischarge AF) significantly increased the risk of death (hazard ratio 4.44 [1.23–15.99], P = .023).

Factors associated with new-onset AF. Among the predictive factors for new-onset AF, age, COPD, lower LVEF, prior stroke and PAD, and preoperative IABP use were associated with new-onset AF. Interestingly, our study reports increased risk of new-onset AF from preoperative use of ACEI before CABG. Higher risk of new-onset AF (OR, 1.33 [95% CI, 1.17–1.51]; P < .0001) and a doubling in mortality risk (OR, 2.83 [95% CI, 1.03–7.88]; P = .04) secondary to preoperative ACEI use was also recently shown by Miceli and colleagues in 3052 patients receiving preoperative ACEI matched 1:1 to a control group by propensity score analysis. A recent study showed benefit with regard to reduction in new-onset AF, whereas others have not shown any benefit. ACEIs are widely known to decrease the risk of AF after MI and cardioversion, but the antiarrhythmic effect of ACEI/angiotensin receptor blocking agents after cardiac surgery at present is at best theoretical. Several mechanisms involving atrial remodeling, including angiotensin II–dependent atrial fibrosis and regulation of angiotensin II–receptor subtypes, have been postulated. Candesartan has been shown to prevent structural atrial remodeling and atrial endothelial dysfunction in hypertensive rats. Given the limitations of our analysis, we cannot claim that preoperative use of ACEI is independently associated with new-onset AF after CABG.

As is widely known, sympathovagal imbalance may be an important trigger for postoperative new-onset AF; the effect of β-blockers on new-onset AF is thus important but controversial. Some factors make this issue complex. First, it is common practice to routinely use β-blockers before surgery and to continue in the postoperative period, yet in many cases they may be inadvertently discontinued and not resumed in a timely manner postoperatively. In our analysis, preoperative β-blocker use was fairly comparable between patients in whom new-onset AF developed postoperatively and those in whom it did not, and β-blockers were shown to be beneficial. Among the intraoperative factors, CPB time and aortic clamp time were associated with new-onset AF. Aortic clamp time has been proposed as one of the main intraoperative factors predisposing to new-onset AF; however, other studies have not shown this association.

Limitations

Our study has several limitations. First, and perhaps most important, is that several factors related to new-onset AF also predict early and late mortality. Distinguishing these complications arising out of new-onset AF from the risks related to pre-existing cardiac disease underscores the daunting task of establishing new-onset AF as an independent contributor to mortality. Meta-analyses of published studies by concept allow univariate analysis only and are in no position to address that question. Second, incomplete matching led to exclusion of large numbers of patients in other studies, particularly in the study by Villareal and colleagues, in which less than 20% of AF cases were represented in the matched-set analysis. Although other studies used propensity score matching, this still does not overcome the potential limitation posed by unrecognized and unmeasured confounders. Third, mortality data in most studies were based on all-cause mortality because of limited autopsy data; as such, the mechanisms of postoperative AF-associated mortality remain at best speculative. Fourth, information on long-term mortality risks in individual studies was scarce. With the exception of Mariscalco and colleagues, published risks did not discount patients who had already died or were lost to follow-up at given time points. This may have introduced bias in calculations of long-term ORs for mortality. Using the information supplied by Mariscalco and associates, we performed a sensitivity analysis to calculate ORs with 2 different denominators (number of patients at baseline versus number of patients at the beginning of the period of interest), and similar ORs were obtained at 6 months, 1 year, and 4 years, probably owing to a low mortality risk on this study. However, this was not the case in other studies, and the risk of bias is still present. Fifth, because our analysis includes several retrospective studies, we cannot exclude the possibility that new-onset AF occurred as a consequence of another postoperative complication, that is, it was a surrogate marker of poor outcome. To overcome this effect, Villareal and colleagues censored in-hospital mortality while making such comparisons, but the association between new-onset AF and reduced survival persisted. Sixth, new-onset AF occurs at different times in different patients, but none of the studies attempted to find associations between temporal onset of new-onset AF and time-specific risk factors, nor did they investigate the conditions between patients at the onset of new-onset AF to identify possible inciting factors. Thus, in this meta-analysis it was not possible to investigate the impact of an active clinical
condition or complication at the onset of new-onset AF, or its immediate consequences, such as occasional acute hemodynamic deterioration secondary to lack of synchronized atrial contraction that may be particularly important for patients with diastolic dysfunction. Last, the studies did not carry enough information regarding medications to explain whether increased postoperative mortality could be related to treatment of new-onset AF or undertreatment of potential thromboembolic risk. In observational studies, sicker patients are often treated, and hence the effects of treatment on outcome are difficult to delineate. However, most centers currently tend to tackle new-onset AF by a formal or informal protocol requiring anticoagulation and chemical or electrical cardioversion, especially if new-onset AF causes hemodynamic compromise.

CONCLUSIONS
Implications for Clinical Practice
Results from the pooled data are too compelling to disregard the association between new-onset AF and early and late mortality after cardiac surgery. Among the modifiable factors, whenever possible less or judicious use of inotropes may help lower the occurrence of new-onset AF, as may shorter CPB and aortic clamp times during the surgery. Increased use of β-blockers, on the other hand, may also decrease occurrence of new-onset AF. Postoperative/intraoperative IABP use was not associated with new-onset AF.

Implications for Research
No evidence to support any pathophysiologic mechanisms linking new-onset AF to mortality exists at this time. Risk factors for mortality in cardiac surgical patients are widely established, but risk factors for new-onset AF have not been well studied, and probably some of them are also risk factors for mortality. Whether this association can be explained by other variables, such as common risk factors for new-onset AF and mortality, remains to be investigated. We could not adjust for these confounders, inasmuch as we used published summary data and did not have access to individual patient data. Future studies need to consider these factors as well as the potential issue of mortality related to treatment of new-onset AF with antiarrhythmics or undertreatment of new-onset AF, particularly in regard to anticoagulation.

References