Effect of anaesthetic technique on the natural killer cell anti-tumour activity of serum from women undergoing breast cancer surgery: a pilot study

A. Buckley1*, S. McQuaid2, P. Johnson2 and D. J. Buggy1,3,4

1 Department of Anaesthesia, Mater Misericordiae University Hospital, Dublin, Ireland
2 Department of Immunology, Dublin City University, Dublin, Ireland
3 School of Medicine & Medical Science, University College Dublin, Dublin, Ireland
4 Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA

* Corresponding author. E-mail: buckleyaisling@hotmail.com

Editor’s key points

- Anaesthetic technique might influence metastasis after cancer surgery.
- A pilot study compared the effects of serum from breast cancer resection patients receiving different anaesthetics.
- Serum from subjects receiving propofol-paravertebral block resulted in greater NK cell cytotoxicity than serum from subjects receiving sevoflurane-opioid.
- Clinical studies of the impact of anaesthetic technique on immune suppression and metastasis are indicated.

Background. Animal models and retrospective clinical data suggest that certain anaesthetic techniques can attenuate immunosuppression and minimize metastasis after cancer surgery. Natural killer (NK) T cells are a critical component of the anti-tumour immune response. We investigated the effect of serum from women undergoing primary breast cancer surgery, randomized to propofol-paravertebral block (PPA) or sevoflurane-opioid (GA) anaesthetic techniques, on healthy human donor NK cell function and cytotoxicity against oestrogen and progesterone receptor-positive breast cancer cells (HCC1500).

Methods. Ten subjects who donated serum before operation and 24 h after operation in an ongoing randomized prospective trial (NCT 00418457) were randomly selected. Serum from PPA (n=5) and GA (n=5) subjects was co-cultured with HCC1500 and healthy primary NK cells. NK cell activating receptors (NKp30, NKp44, NKp46, 2b4, CD16, NKG2D), cytokine production, NK CD107a expression, and cytotoxicity towards HCC1500 were examined.

Results. Serum from PPA subjects did not alter normal NK marker expression or secretion of cytokines. Serum from GA subjects reduced NK cell activating receptor CD16 [from mean (SEM), 82 (2)% to 50 (4)%,

\[P = 0.001\]

and IL-10 [from 1700 (80) to 1200 (92) pg ml\(^{-1}\), \[P = 0.001\]] and IL-1β [from 68 (12) to 19 (4) pg ml\(^{-1}\), \[P = 0.01\]]. An increase in NK cell CD107a [23 (2)% to 37(3)%], \[P = 0.007\] and apoptosis of HCC1500 [11 (1)% to 21 (2)%], \[P = 0.0001\] was observed with PPA serum, but not GA serum, treated NK cells.

Conclusion. Serum from women with breast cancer undergoing surgical excision who were randomized to receive a PPA anaesthetic technique led to greater human donor NK cell cytotoxicity in vitro compared with serum from women who received GA.

Clinical trial registration. NCT 041857.

Keywords: anaesthesia, general; anaesthesia regional; breast neoplasms; immune cells, natural killer cells; immunity, innate

Accepted for publication: 18 March 2014
tumour cells. Their main function is recognition and killing of virus infected cells or tumour cells. Patients with low levels of NK cell activity are predisposed to tumour progression.21

Our group has previously used patient serum as a tool to evaluate the effect of anaesthetic technique on cancer cell biology. Serum was obtained from breast cancer patients randomized in an ongoing prospective trial to receive two distinct anaesthetic techniques, and its effects on breast cancer cell biology in vitro have been evaluated.18 19

The potential effect of serum from patients who received different anaesthetic techniques on healthy human NK cells in vitro has not been investigated. In this pilot study, we examined the effect of serum from subjects randomized in the ongoing clinical trial on anti-tumour activity of healthy human NK cells towards an oestrogen and progesterone receptor-positive breast cancer cell line (HCC1500).

Methods

Clinical protocol

Primary breast cancer surgery patients aged 18–85 yr were randomized in an ongoing trial (NCT 00418457) to either propofol and paravertebral block (PPA) or sevoflurane and opioid (GA) anaesthetic techniques, using a secure web-based randomization system according to a table of random numbers. Additional consent was obtained retrospectively by telephone contact from subjects randomly selected to participate in this add on serum study. Exclusion criteria were inflammatory breast cancer, prior breast cancer surgery, other cancer, ASA status ≥ IV, contraindications to paravertebral block or midazolam, propofol, sevoflurane, fentanyl, or morphine. Written informed consent and Research Ethics Committee approval were obtained. In the PPA group, a paravertebral catheter was placed using a landmark technique and 20 ml of 0.25% levobupivacaine was administered. Induction and maintenance of anaesthesia was with propofol target-controlled infusion to 4 μg ml⁻¹ and oxygen/air. Paravertebral catheter infusion of 8–10 ml h⁻¹ 0.25% levobupivacaine was continued for 24 h after operation. Rescue analgesia, if indicated, was given for verbal pain response score ≥ 3 and consisted of a paravertebral bolus 0.25% levobupivacaine 10 ml. If this did not alleviate pain in < 15 min, morphine 0.1 mg kg⁻¹ i.v. was administered.

The GA group received 1–3 μg kg⁻¹ fentanyl, 2–4 mg kg⁻¹ propofol, and maintenance with sevoflurane and oxygen/air to maintain arterial pressure and heart rate within 20% of preoperative baseline values. I.V. morphine was titrated to a respiratory rate of 12–14 bpm. Postoperative analgesia was provided as patient-controlled analgesia morphine or bolus i.m. morphine 0.1 mg kg⁻¹ for 24 h. Blood samples were obtained from all patients before operation and 24 h after operation, centrifuged, and stored at −80°C. Serum from PPA (n=5) and GA subjects (n=5) was randomly selected from among > 100 patients already randomized to the long-term clinical trial.

Buffy coat isolation

Healthy donor blood was supplied by the Irish Blood Transfusion Service, St James Hospital, Dublin, Ireland. This was treated with 5% ethylenediaminetetraacetic acid and diluted (1:2) with hank’s balanced salt solution (HBSS) (Bio-Sciences, Oxford, UK) supplemented with 1% fetal calf serum (FCS) and 10 mM hydroxyethyl piperazineethanesulfonic acid (HEPES). Treated blood was layered over the density gradient medium Lymphoprep (STEMCELL Technologies, Grenoble, France) and centrifuged at 400 g (Hettich Universal 320R, DJB Labcare Ltd, Buckinghamshire, UK) for 25 min. The interface cells were collected and washed once in HBSS and suspended in RPMI 1640 medium (Bio-Sciences) supplemented with 10% FCS, 10 mM HEPES, 2 mM l-glutamate, 100 U penicillin ml⁻¹, and 100 μg streptomycin ml⁻¹.

NK cell isolation

CD56⁺ cells were purified from peripheral blood mononuclear cells, using magnetic-activated cell sorting Anti-CD56 conjugated microbeads (Miltenyi Biotec, Surrey, UK) according to the manufacturer’s protocol. Flow cytometry routinely determined a purity of > 95% for NK cells.

Tumour cell culture

The human oestrogen, and progesterone receptor-positive primary breast cancer cell line HCC1500, was cultured in ATCC-formulated RPMI-1640 Medium supplemented with 10% FCS. Media were renewed every 3–5 days and subcultivation was performed using the trypsin method.

Cell co-culture in serum samples

RPMI-1640 medium was supplemented with 10% of sample serums. Ten per cent of serum concentration was chosen as this was shown to be the optimum serum concentration for in vitro cell culture.18 NK and human cancer cells (HCCs) were resuspended in this supplemented medium before coculture at a ratio of 1:10 for 24 h.

Enzyme-linked immunosorbent assay

Supernatants were retrieved after 24 h co-incubation with healthy CD 56 NK cells and HCC1500 cell line. ELISA kits (R&D Systems, Abingdon, UK) were used to quantify levels of IL-8, IL-10, IL-2, IFN, and IL-1β according to the manufacturer’s protocol.

NK cell receptor and CD107a expression

Activating receptor expression was determined by flow cytometry. After 24-h culture, NK cells were stained with fluorescence conjugated antibodies for the detection of CD56, Nkp30, Nkp44, Nkp46, 2b4, CD16, or NKG2D expression. NK cells expressing each particular receptor were analysed by FACSCalibur™ Flow Cytometer and CellQuest software (BD Bio-sciences, Oxford, UK). CD107a expression was for NK cells cultured alone or co-cultured with HCC cells in subject serum-supplemented medium.
HCC cells were cultured either alone or with NK cells in medium supplemented with subject serum. After 24 h, cells were stained with FITC-Annexin V and propidium iodide using FITC-Annexin V Apoptosis Detection Kit 1 (BD Pharmingen, Oxford, UK) according to the manufacturer's protocol with analysis by flow cytometry.

Tables

Table 1 Subject characteristics and breast cancer staging. Data presented as median (interquartile range) or number (%)

<table>
<thead>
<tr>
<th></th>
<th>GA (sevoflurane–opioid)</th>
<th>PPA (propofol–paravertebral block)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td>155 (152–162)</td>
<td>165 (159–174)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>69 (52–73.6)</td>
<td>79 (55–94)</td>
</tr>
<tr>
<td>ASA I</td>
<td>3 (60%)</td>
<td>2 (40%)</td>
</tr>
<tr>
<td>ASA II</td>
<td>2 (40%)</td>
<td>3 (60%)</td>
</tr>
<tr>
<td>Mastectomy</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>WLE</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Node positive</td>
<td>2 (40%)</td>
<td>3 (60%)</td>
</tr>
<tr>
<td>Oestrogen receptor positive</td>
<td>5 (100%)</td>
<td>5 (100%)</td>
</tr>
<tr>
<td>Progesterone receptor positive</td>
<td>5 (100%)</td>
<td>5 (100%)</td>
</tr>
<tr>
<td>HER positive</td>
<td>3 (60%)</td>
<td>2 (40%)</td>
</tr>
<tr>
<td>Morphine (mg)</td>
<td>10 (0–17)</td>
<td>0 (0–2.5)</td>
</tr>
</tbody>
</table>

Discussion

Serum from women with breast cancer who had been randomized to receive propofol–paravertebral anaesthesia for their primary breast cancer surgery maintained healthy donor NK anti-tumour cell activity compared with serum from women receiving a sevoflurane–opioid anaesthetic technique.

In the perioperative period, a brief profound inflammatory stress response occurs that is conducive to tumour progression through suppression of cell-mediated immunity. The stress response is characterized by sympathetic nervous system mediated β-odrenergic stimulation with release of catecholamines and prostaglandins and activation of the hypothalamic–pituitary axis with glucocorticoid production. A reduction in number of NK cells occurs and the ratio of TH1/TH2 cells is shifted towards pro-inflammatory TH2 development with an increase in plasma concentrations of TH2 cytokines.

Laparotomy increases animal corticosterone levels with a simultaneous decrease in NK cytotoxicity, whereas dexamethasone reduces NK cell cytotoxicity and expression of cytolytic enzyme granzyme A. Cytokines IL-1β, IL-6, IL-8,
and IL-12 are down-regulated by glucocorticoids with up-regulation of IL-10 and the TH2 response.23

NK cells express β adrenergic receptors.24 Upon activation, an increase in cAMP and protein kinase A results in decreased NK cytotoxicity.25 This effect is prevented by β adrenergic receptor block.12 Suppression of NK cell cytotoxicity was demonstrated in rats undergoing laparotomy through splenic nerve sympathetic activation via brain opioid receptor activation. This effect was antagonized by naloxone.24 Opioids have conflicting immunomodulatory effects. Fentanyl depressed NK cell function in a rat laparotomy model, while tramadol prevented metastasis in animal surgery and increased postoperative NK activity in cancer patients.12 Pain also suppresses cell-mediated immunity.20 This effect is attenuated by opioid analgesia in animal pain models.26 The increased cytotoxic response of PPA-treated NK cells exposed to tumour cells in our study, which was not seen in the GA group, could result from an immunomodulatory effect of opioids or from reduced pain with the use of regional anaesthesia.

Anaesthetic agents including ketamine, thiopental, and volatile agents reduce NK cell activity and increase breast cancer metastasis in animal models, while propofol did not suppress NK cell cytotoxicity.12 Propofol suppresses tumour growth in a mouse model with preservation of in vitro cytotoxic T lymphocyte activity.27 Propofol also reduces PGE2 production in vitro,28 which is a known mediator of pain and inflammation that inhibits NK cell cytotoxicity through EP2 and EP4 receptors.29 This attribute of propofol compared with volatile agents is consistent with the increased cytotoxicity of PPA serum-treated NK cells noted in our pilot study.

Regional anaesthesia through different sensory and effenter sympathetic block attenuates the stress response to surgery.2 Spinal anaesthesia preserves NK cell function and TH1/TH2 balance30 and might also reduce opioid and intraoperative volatile requirements. In animal studies, spinal anaesthesia is associated with preserved NK cell function and reduced lung metastasis after laparotomy.11 However, a meta-analysis found no association between regional anaesthesia and NK cell function, but was limited by number and heterogeneity of existing studies.31 Our findings build upon the scarce existing literature evaluating potential mechanisms for effects of anaesthetic technique on metastasis in primary cancer surgery.

We observed decreased IL-10 expression in GA serum-treated NK cells. IL-10 is produced by Type 2 helper T cells and is involved in inhibition of pro-inflammatory cytokines and down-regulation of cell-mediated immunity.30 32 Previous in vitro studies of breast and ovarian cancer found increases in serum IL-10 with use of regional anaesthetic techniques.33 34 IL-10 inhibits tumour metastasis through an NK-dependent mechanism.33 Breast cancer surgery patients receiving sevoflurane and opioid displayed significantly lower serum IL10/IFN-γ ratio than those receiving propofol and paravertebral.32 This is in keeping with our findings; however, our study was unique in that we measured cytokines from supernatants retrieved after co-incubation of NK cells and HCC1500 tumour
cells in serum rather than directly from patient serum in order to look at the effect of NK cell-related cytokine production. We found a decrease in the IL-1β expression by GA serum-treated NK cells. IL-1β is a mediator of the acute phase response resulting in elevated prostaglandin levels, tachycardia, and accelerated catabolism. It has been shown to facilitate nociception during neuropathic and inflammatory pain. IL-1β stimulates T and B cells, prostaglandin production, myelopoiesis, and adrenocorticotropic hormone (ACTH) release. Laparoscopy compared with open laparotomy recto-sigmoid carcinoma excision resulted in significantly lower elevation in IL-1β. A study of breast cancer patients’ serum found reduced serum IL-1β after operation with PPA anaesthesia compared with GA. Another clinical study of ovarian cancer showed attenuated increase in serum IL-1β with a regional anaesthetic technique. However, sedation with propofol–ketamine did not modify plasma concentrations of IL-1β, IL-2, IL-6, IL-10, IL-8, IL-12p70, or IFN-γ or the T helper cell 1/2 ratio in children with leukaemia undergoing bone marrow aspiration. Isoflurane suppressed glial cell IL-1β up-regulation and plasma ACTH but not plasma IL-1β in intraperitoneal lipopolysaccharide inoculated mice. Our findings of reduced IL-1β expression by the GA group differs from those of previous studies; however, results might vary between studies depending on stimulation methods and cell type.

NK cells express activating receptors that are involved in tumour lysis and control of metastatic spread including Nkp30, Nkp44, Nkp46, 2b4, CD16, and NKG2D. Nkp30, Nkp44, and Nkp46 are natural cytotoxicity receptors expressed mainly on NK cells. CD16 is an important NK activating receptor involved in direct tumour cell lysis, antibody-dependent cellular cytotoxicity, cytokine production, and post-activation NK cell apoptotic death. When NK cells become cytotoxic, they degranulate and express the surface protein CD 107a. The expression of this protein correlates with target tumour cell death. The reduction in CD16 and failure to increase CD107a NK receptor expression in response to HCC1500 in GA serum correlated with functional changes in NK cell cytotoxicity seen through the effects of the GA serum on HCC1500 apoptosis.

Caution should be exercised in interpreting these data and extrapolating implications to the clinical scenario. Healthy NK cells from donors could exhibit different immunological behaviour compared with NK cells of women with breast cancer. The scope of cytokine function and interactions is large with alterations occurring in inflammation, pain, surgery, and trauma,
which might behave differently in vitro. NK cells play an important role in the cancer immune response.\(^2\) The findings of our study are in keeping with the hypothesis that regional anaesthesia and avoidance of volatile agents and opioids could contribute to reduced perioperative residual disease. Further studies to examine the influence of anaesthetic technique on NK cells from cancer patients are warranted.

Authors’ contributions

Supplementary material

Supplementary material is available at *British Journal of Anaesthesia* online.

Acknowledgement

The authors thank Elizabeth Coghlan, Clinical Research Nurse for collection of subject data.

Declaration of interest

D.J.B. is an Editorial Board member of *BJA*.

Funding

This study was funded by The Sisk Healthcare Foundation and by the Division of Anaesthesia, Mater University Hospital, Dublin.

References

3. Exadaktylos AK, Buggy DJ, Moriarty DC, Mascha E, Sessler DI. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? *Anesthesiology* 2006; 105: 660–4
5. Day A, Smith R, Jourdan I, Fawcett W, Scott M, Rockall T. Retrospective analysis of the effect of postoperative analgesia on survival in...

Page GG, Blakely WP, Ben-Eliyahu S. Evidence that postoperative pain is a mediator of the tumor-promoting effects of surgery in rats. Pain 2001; 90: 191–9

Sultan SS. Paravertebral block can attenuate cytokine response when it replaces general anesthesia for cancer breast surgeries. Saudi J Anaesth 2013; 7: 373–7

Handling editor: H. C. Hemnings